
Kubernetes Administration
-Workbook-

Course ID: KUB201v1.2
Version: 1.2.0

Date: 2021-04-20

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Proprietary Statement
Copyright © 2021 SUSE LLC. All rights reserved.

SUSE LLC, has intellectual property rights relating to
technology embodied in the product that is described in this
document.

No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the
express written consent of the publisher.

SUSE

Maxfeldstrasse 5

90409 Nuremberg

Germany

www.suse.com

(C) 2021 SUSE LLC. All Rights Reserved. SUSE and the SUSE logo
are registered trademarks of SUSE LLC in the United States and
other countries. All third-party trademarks are the property of
their respective owners.

Disclaimer
SUSE LLC, makes no representations or warranties with respect
to the contents or use of this documentation, and specifically
disclaims any express or implied warranties of
merchantability or fitness for any particular purpose.

Further, SUSE LLC, reserves the right to revise this publication
and to make changes to its content, at any time, without
obligation to notify any person or entity of such revisions or
changes. Further, SUSE LLC, makes no representations or
warranties with respect to any software, and specifically
disclaims any express or implied warranties of
merchantability or fitness for any particular purpose. Further,
SUSE LLC, reserves the right to make changes to any and all
parts of SUSE software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this
Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all
export control regulations and to obtain any required licenses
or classification to export, re-export or import deliverables.
You agree not to export or re-export to entities on the current
U.S. export exclusion lists or to any embargoed or terrorist
countries as specified in the U.S. export laws. You agree to not
use deliverables for prohibited nuclear, missile, or chemical
biological weaponry end uses. SUSE assumes no
responsibility for your failure to obtain any necessary export
approvals.

This SUSE Training Manual is published solely to instruct
students in the use of SUSE networking software. Although
third-party application software packages may be used in
SUSE training courses, this is for demonstration purposes only
and shall not constitute an endorsement of any of these
software applications.

Further, SUSE LLC does not represent itself as having any
particular expertise in these application software packages
and any use by students of the same shall be done at the
student’s own risk.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Table of Contents
Documentation Conventions:...9

Section 1 : Course Introduction...10
Lab Environment Diagrams...11

Lab Environment Information..12

Lab Environment Requirements..13

Exercise 1 : Start the Lab Environment VMs..14
Task 1: Start the Lab Environment VMs..14

Task 2: Log Into the Management Workstation VM...15

Section 2 : Introduction to Containers and Container
Orchestration..16

(No Exercises)...17

Section 3 : Kubernetes Administration...18
Exercise 1 : Use Basic kubectl Commands..19

Task 1: List Commands..19

Task 2: Describe Commands..20

Task 3: Creation and Deletion Commands...21

Task 4: Troubleshooting Commands...22

Exercise 2 : Work with Namespaces in Kubernetes...24
Task 1: List Namespaces...24

Task 2: Create a Namespace...24

Task 3: Delete a Namespace..25

Exercise 3 : Deploy a Simple Pod Using a Deployment..26
Task 1: Examine a Manifest for the Deployment..26

Task 2: Deploy the Pod...27

Exercise 4 : Delete and Redeploy a Deployment..28
Task 1: Delete the Deployment...28

Task 2: Redeploy the Deployment...29

Exercise 5 : Update Pods in a Deployment..30
Task 1: Create a New Manifest for the Deployment...30

Task 2: Update the Deployment..31

Exercise 6 : Create and Edit a Service for an Application...33
Task 1: Examine a Manifest for the Service..33

Task 2: Define the Service...33

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Task 3: Access the Exposed Service...34

Task 4: Edit the Service..34

Task 5: Review Service..35

Task 6: Delete the Service...35

Exercise 7 : Use Environment Variables in a Pod...37
Task 1: Examine the Manifest for the Pod...37

Task 2: Deploy the Pod...38

Task 3: Display the Environment Variable in the Container..38

Task 4: Delete the Pod..38

Exercise 8 : Use ConfigMaps with a Pod...40
Task 1: Display the Manifests for the ConfigMap and Pod..40

Task 2: Deploy the configMap and Pod...41

Task 3: Display the Environment Variables in the Container...41

Task 4: Delete the Pod..42

Exercise 9 : Define and Access Secrets as Volumes...43
Task 1: Define the Secret...43

Task 2: Deploy a Pod that Uses the Secret..44

Task 3: Access the Secret in the Pod..44

Task 4: Delete the Pod and the Secret..45

Exercise 10 : Define and Access Secrets as Environment Variables.............................46
Task 1: Define the Secret...46

Task 2: Deploy a Pod that Uses the Secret..47

Task 3: Access the Secret in the Pod..48

Task 4: Delete the Pod..48

Exercise 11 : Work with Labels and Selectors...50
Task 1: Deploy Pods..50

Task 2: Select Pods by Band..50

Task 3: Create a Label...51

Task 4: Delete Pods by Label...51

Exercise 12 : Work with Node Selectors..52
Task 1: Attach Labels to Nodes...52

Task 2: Deploy Pods..52

Task 2: Select Pods by Band...53

Task 4: Delete Pods by Label...53

Exercise 13 : Work with Taints and Tolerations..55
Task 1: Add Taints to Nodes...55

Task 2: Deploy Pods..55

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 3: Select Pods by Band..56

Task 4: Delete Pods by Label..57

Task 5: Remove Taints from Nodes...57

Exercise 14 : Scale a Deployment..59
Task 1: Examine a New Manifest for the Deployment...59

Task 2: Scale the Deployment...60

Task 3: Manually Scale the Deployment Out..60

Exercise 15 : Configure Horizontal Pod Autoscaling...62
Task 1: Deploy the AutoScaler Manifests..62

Task 2: Cause the Deployment To Scale Out...63

Task 3: Cause the Deployment To Scale Back..63

Task 4: Clean Up the Deployments..63

Section 4 : Application Management on Kubernetes with
Kustomize..65

Exercise 1 : Manage Applications with Kustomize..66
Task 1: Examine the Base Manifests..66

Task 2: Deploy the Base Application...68

Task 3: Examine the Overlay Manifests..68

Task 4: Deploy the Prod, Stage and Dev Applications...70

Task 5: Delete the Base, Prod, Stage and Dev Applications..70

Task 6: (OPTIONAL) Experiment with Modifying the Different Applications..71

Section 5 : Application Management on Kubernetes with Helm
..72

Exercise 1 : Add a Repository to Helm...73
Task 1: Add the Bitnami Repository..73

Exercise 2 : Deploy an Application with Helm..74
Task 1: Create Helm Chart Config File...74

Task 2: Deploy the Helm Chart..75

Task 3: Access the Application Deployed by the Helm Chart...75

Task 4: Delete a Deployed Helm Chart Release..76

Section 6 : Ingress Networking with an Ingress Controller in
Kubernetes..78

5

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Exercise 1 : Configure Ingress for an Application..79
Task 1: Deploy Websites...79

Task 2: Deploy the Ingress Rules..80

Task 3: Test the Ingress...81

Section 7 : Storage in Kubernetes..83
Exercise 1 : Configure Persistent Storage with NFS...84

Task 1: Create the Persistent Volume on the NFS Server...84

Task 2: Examine the Manifests for the Persistent Volumes..84

Task 3: Examine the Manifest for the Persistent Volume Claim..85

Task 4: Examine the Manifest for the Busybox Instance...86

Task 5: Examine the Manifest for the Webserver Instance...87

Task 6: Examine the Manifest for the Web Service...88

Task 7: Deploy the Objects..88

Task 8: Test the Persistent Data...89

Task 9: Remove the Objects from the Cluster..90

Exercise 2 : Configure Persistent Storage with a NFS StorageClass..............................91
Task 1: Deploy the NFS storageClass...91

Task 2: Examine the Manifest for the Persistent Volume..92

Task 3: Examine the Manifest for the Busybox Instance...92

Task 4: Examine the Manifest for the Webserver Instance...93

Task 5: Examine the Manifest for the Web Service...94

Task 6: Deploy the Objects..95

Task 7: Examine the Persistent Storage..96

Task 8: Test the Persistent Data...96

Task 9: Remove the Objects from the Cluster..96

Task 10: Reexamine the Persistent Storage..96

Section 8 : Resource Usage Control in Kubernetes......................98
Exercise 1 : Define Default Limits for Pods in a Namespace...99

Task 1: Create a New Namespace in the Cluster...99

Task 2: Examine the Manifest that Defines the Limits..99

Task 3: Apply the Limits to the Namespace...100

Exercise 2 : Define Limits for Containers and Pods...102
Task 1: Deploy a Pod with No Limits or Requests..102

Task 2: Deploy a Pod with Only a Limit...103

6

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 3: Deploy a Pod with Only a Request...104

Task 4: Deploy a Pod Requesting Too Much CPU...104

Task 5: Deploy a Pod Requesting Too Little CPU..105

Task 6: Delete the Namespace and from the Cluster...105

Exercise 3 : Define Quotas for a Namespace..107
Task 1: Create a New Namespace in the Cluster..107

Task 2: Examine the Manifests that Define the Quotas..107

Task 3: Set Quotas for a Namespace...108

Exercise 4 : Test Quotas for a Namespace...110
Task 1: Deploy a Pod in a Namespace that Contains Quotas..110

Task 2: Check Quota Usage in a Namespace..111

Task 3: Scale Out a Deployment..112

Task 4: Change Quotas for a Namespace...113

Task 5: Scale a Deployment Again...114

Task 6: Delete Quotas for a Namespace...116

Task 7: Delete the Namespace..117

Section 9 : Role Based Access Controls Security in Kubernetes
... 119

Exercise 1 : Create Service Accounts..120
Task 1: Create a New Namespace...120

Task 2: Create Service Account Manifests..120

Task 3: Create the Service Accounts in the Namespace..121

Exercise 2 : Create kubeconfig Files for Service Accounts..122
Task 1: Create kubeconfig Files..122

Exercise 3 : Create Roles and ClusterRoles..125
Task 1: Create a Roles with from Manifests...125

Task 2: Create Cluster Roles from Manifests...126

Exercise 4 : Create RoleBindings and ClusterRoleBindings..128
Task 1: Create Role Bindings from Manifests...128

Task 2: Create Cluster Role Bindings from Manifests...129

Exercise 5 : Test RBAC in Kubernetes...131
Task 1: Test the RBAC Roles for the Charlie User...131

Task 2: Test the RBAC Rules for the Linus User..132

Task 3: Test the RBAC Rules for the Lucy User...134

7

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

8

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Documentation Conventions:

The following typographical conventions are used in this manual:

Bold Represents things you should pay attention to or
buttons you click, text or options that you should
click/select/type in a GUI.

Bold Gray Represents the name of a Task or in the context of
what is seen on the screen, the screen name, a tab
name, column name, field name, etc.

Bold Red Represents warnings or very important information.

Option > Option > Option Represents a chain of items selected from a menu.

BOLD_UPPERCASE_ITALIC Represents an “exercise variable” that you replace with
another value.

bold monospace Represents text displayed in a terminal or entered in a
file.

bold monospace blue Represents commands entered at the command line.

bold monospace green Represents a file name.

9

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

1 Course Introduction

Description:

This section introduces the course objectives and audience. It also provides
and overview of the lab environment for the course.

10

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Lab Environment Diagrams

11

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Lab Environment Information
The lab environment is comprised of 6 Kubernetes cluster nodes (three control plane nodes
and three worker nodes) and a management workstation. The management workstation also
functions and the DNS, NTP, NFS, etc server for the lab environment and should be powered
on and remain powered on while the cluster is running.

The management workstation is where you perform the vast majority of the lab exercises.

12

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Lab Environment Requirements

CPU: 4 Core

RAM: 50GB for VMs

Disk: 200GB

Minimum Host OS: openSUSE Leap 15.2, SLES 15 SP2

13

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

1- 1 Start the Lab Environment VMs

Description:

In this exercise, you use the Virt-Manager utility to start the lab VMs in the

proper order and then log into the management workstation.

Task 1: Start the Lab Environment VMs

1. On the lab machine, if not already open, launch the Virt-Manager utility
You should see the course VMs listed.

2. Right-click on the KUB201-management VM and select Run.
3. Double-click on the KUB201-management node to view its console.

When the KUB201-management node has finished booting completely and
you see the graphical login, close its console window.
(You can use the CPU utilization graph in Virt-Manager to see when the node is
finished booting and starting services.)

4. Next, right-click on the KUB201-control01 VM and select Run.
Double-click on the KUB201-control01 node to open its console.
When the KUB201-control01 node has finished booting completely, close its
console window.

5. Next, repeat the preceding steps for the remaining VMs in the following order:

KUB201-control02
KUB201-control03
KUB201-worker01
KUB201-worker02
KUB201-worker03

The required lab environment VMs should now be running.

14

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 2: Log Into the Management Workstation VM

1. On the management workstation (KUB201-management), log in using the
following credentials:

Username: tux
Password: linux

You should be able to complete most if not all of the lab exercises while
logged into the management workstation as the tux user.
If for some reason you need to log into the management workstation as the
root user use the following credentials:

Username: root
Password: linux

Summary:

In this exercise, you started the lab VMs in the required order. You then log into

the management workstation as the tux user.

(End of Exercise)

15

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

2 Introduction to Containers and Container
Orchestration

Description:

In this section you are introduced to container and container orchestration
concepts.

16

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

(No Exercises)

17

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3 Kubernetes Administration

Description:

In this section you are introduced to and you perform Kubernetes
administration tasks.

18

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 1 Use Basic kubectl Commands

Description:

In this exercise you take your first steps with the kubectl command. The

kubectl command is primary user CLI interface into a Kubernetes cluster.

Task 1: List Commands

1. On the management workstation, in a terminal, enter the following command
to list all nodes in your cluster:

kubectl get nodes

You should see a list of all of your master and worker nodes.
2. Enter the following command to list all namespaces:

kubectl get namespaces

You should see a list of all of the default namespaces:

default
kube-node-lease
kube-public
kube-system

You may potentially see some additional namespaces depending on how the
cluster was deployed and what has been deployed on it.

3. Enter the following command to list all of the pods in the kube-system
namespace:

kubectl --namespace kube-system get pods

You should see a list of running pods. Many pods will have a standard first
name and a randomized last name. Others will specify which node they are
assigned to.

4. Enter the following command to list all of the services in the default
namespace:

19

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kubectl get services

You should see the standard Kubernetes service and any additional services
that you might have created in this namespace.

5. Re-run the previous four steps but add the following to the end of the
command:

-o wide

You should see a more verbose output for each command. This can aid
greatly when troubleshooting some functions in Kubernetes. Not every
command will provide more information.

6. Enter the following command to list all of the api-resources in Kubernetes.
These are all things that can be listed and used in Kubernetes.

kubectl api-resources

All of the entries from this list can be used with the kubectl get command
though not all of them will have resources on your cluster yet. Add -o wide to
this command to get a list of verbs that can be used with each resource.

Task 2: Describe Commands

1. On the management workstation, in a terminal, enter the following command
to get the status of your cluster:

kubectl cluster-info

You should get some basic information about your cluster. To get a detailed
dump of cluster information, run:

kubectl cluster-info dump

2. Enter the following command to get information about the default
namespace:

kubectl describe namespace default

You should see all of the available information about this namespace
including status, quotas, and resource limits.

3. Enter the following command to display a list of the pods running in the kube-
system namespace:

kubectl -n kube-system get pods

20

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

You should see the pods running in the namespace.
Choose one of the pods to use in the next step.

4. Enter the following command to get information about the pod you selected in
the previous step:

kubectl -n kube-system describe pod POD_YOU_SELECTED

You should see detailed information about this pod. Any time a pod is not in a
ready status, this is the first command that should be run.

Note:
The describe command always needs to know what kind of
resource it is describing. kubectl describe will not work but
kubectl describe namespace or kubectl describe pod will
work because the resource is included in the command.

Task 3: Creation and Deletion Commands

1. On the management workstation, in a terminal, enter the following command
to create a namespace:

cd ~/course_files/KUB201/labs/manifests/simple-pod/

kubectl create -f simple-pod.yaml

You should see the following output to confirm that it has been installed:

pod/simple-pod created

2. Enter the following command to display the running pods:

kubectl get pods

You should see the pod listed as running.
3. Enter the following command to delete a simple pod:

kubectl delete pod simple-pod

Enter the following command to confirm that the pod is no longer running:
4. Enter the following command to deploy the pod again

kubectl apply -f simple-pod.yaml

21

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

The pod should be created.
5. Check that the pod is running again:

kubectl get pods

Note:
The kubectl create and apply commands can sometimes be used
interchangeably. However the create commands can create new
resources from the command line and the apply command can update
existing resources with manifests files.

Task 4: Troubleshooting Commands

1. On the management workstation, in a terminal, enter the following command
to get the application logs from the kube-apiserver-master01 pod:

kubectl logs simple-pod

Your output will vary depending on the cluster but you should see log entries
for the api server application running in the simple-pod pod.

2. Enter the following command to enter into the pod filesystem from the
previous task:

kubectl exec -it simple-pod -- bash

You should now have a new root command prompt inside the pod.
Run the following command to leave this shell:

exit

If this were your application, you could troubleshoot any issues with it directly.
3. Enter the following command to delete the pod now that you are finished with

it:

kubectl delete pod simple-pod

The pod should have been deleted.

Summary:

22

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

In this exercise you learned how to use some listing, describing, creating,

troubleshoot, and deleting commands. These are useful for any Kubernetes

administrator but they are only the tip of what Kubernetes can do.

(End of Exercise)

23

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 2 Work with Namespaces in Kubernetes

Description:

In this exercise you list, create and delete namespaces.

Task 1: List Namespaces

1. On the management workstation, in a terminal, enter the following command
to list the namespaces that currently exist:

kubectl get namespaces

You should see, among others, namespces such as default and kube-
system.

2. Enter the following command to list the pods in the current namespace:

kubectl get pods

You should see the message "No resources found int the default namespace.".
This tells you a couple things. First, your default namespace is named "default".
Second there are not pods currently running in that namespace.

3. Enter the following command to list the pods in the kube-system namespace:

kubectl -n kube-system get pods

This time you should see a number of pods listed.

Task 2: Create a Namespace

1. Enter the following command to create a new namespace:

kubectl create namespace mynamespace

The namespace should have been created.
2. Enter the following command to list that namespaces again:

24

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kubectl get namespaces

You should see your new namespace listed.

Task 3: Delete a Namespace

1. Enter the following command to delete the new namespace:

kubectl delete namespace mynamespace

The namespace should have been deleted.
Note that when deleting a namespace, all objects in the namespace also get
deleted. (In this case there were no additional objects in the namespace.)

2. Enter the following command to list that namespaces again:

kubectl get namespaces

You should no longer see your new namespace listed.

Summary:

In this exercise you first listed the current namspaces. You then created a new

namspace, verified that it existed, then deleted the namespace and verified it

was deleted.

(End of Exercise)

25

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 3 Deploy a Simple Pod Using a Deployment

Description:

In this exercise you deploy the Nginx web server as a simple pod on the

Kubernetes cluster.

Task 1: Examine a Manifest for the Deployment

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the nginx manifests and
display the contents of the nginx-deployment.yaml file:

cd ~/course_files/KUB201/labs/manifests/nginx

cat nginx-deployment.yaml

You should see the following:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 env: "app"
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 4
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9

26

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 ports:
 - containerPort: 80

Notice the image: that is being used and the number of replicas that will be
created. Close the file when done.

Task 2: Deploy the Pod

1. To deploy the pod, open a terminal and enter the following command:

kubectl apply -f nginx-deployment.yaml

You should see the deployment nginx-deployment was created.
2. Enter the following command to view the deployments:

kubectl get deployments

You should see four instances of the nginx-deployment pod are running.
(Note that it may take a few seconds for all instances to be READY).

3. Enter the following command to view the deployed pods:

kubectl get pods

You should see a four instances of the nginx-deployment pod running or
being created.

Summary:

In this exercise, you launched a four instances of the Nginx web server as

pods in a deployment on the cluster.

(End of Exercise)

27

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 4 Delete and Redeploy a Deployment

Description:

In this exercise, you delete the Nginx web server deployment that was

previously deployed on the Kubernetes cluster.

Task 1: Delete the Deployment

1. To view the deployments, on the management workstation, enter the
following command:

kubectl get pods

You should see that one or more instance of the pod in the nginx-deployment
is running.
Record the name of the first nginx pod here:
NGINX_POD1=

2. Enter the following command to delete the first pod from the deployment:

kubectl delete pod NGINX_POD1

The pod should have been deleted.
3. Enter the following command to list the pods in the deployment again:

kubectl get pods

Notice that the pod you deleted is gone but a new pod was created to take its
place.

4. Enter the following command to delete the deployment:

kubectl delete deployment nginx-deployment

You should see the nginx-deployment was deleted.
5. View the deployments again:

kubectl get deployments

28

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

You should see that the nginx-deployment is no longer running.
6. View the pods:

kubectl get pods

You should see that all of the pods that were part of the nginx-deployment
are no longer running or may be in the process of terminating.

Task 2: Redeploy the Deployment

1. To redeploy the deployment enter the following commands:

cd ~/course_files/KUB201/labs/manifests/nginx/

kubectl apply -f nginx-deployment.yaml

You should see the deployment “nginx-deployment” was created.
2. Enter the following command to view the deployments:

kubectl get deployments

You should see that four instances of the nginx-deployment pod are running
or are being created.

3. Enter the following command to view the deployed pods:

kubectl get pods

You should see four instances of the nginx-deployment pod running.

Summary:

In this exercise you deleted a single pod from the Nginx web server
deployment and saw that it was replaced. You then deleted the entire
deployment. Finally you redeployed the deployment.

(End of Exercise)

29

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 5 Update Pods in a Deployment

Description:

In this exercise, you update a running pod in a deployment.

Task 1: Create a New Manifest for the Deployment

1. On the management workstation, enter the following commands to make a
copy of the nginx-deployment.yaml file:

cd ~/course_files/KUB201/labs/manifests/nginx/

cp nginx-deployment.yaml nginx-update.yaml

2. In the text editor of your choice, open the nginx-update.yaml file
3. Edit the file to match the following (changes are in red):

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 env: "app"
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 4
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.0
 ports:

30

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 - containerPort: 80

4. Save the file and close the text editor

Task 2: Update the Deployment

1. To display information on the current nginx deployment enter the following
command:

kubectl describe deployment nginx-deployment

You should see the description of the nginx deployment displayed.
Notice the image version is: nginx:1.7.9

2. Open another terminal and enter the following command to watch the
running pods:

watch kubectl get pods

You should see a list of the running pods displayed with the list updating every
2 seconds.

3. To update the deployment, open a terminal and enter the following
command:

kubectl apply -f nginx-update.yaml

You should see the deployment nginx-deployment was configured.
4. Enter the following command to view the deployments:

kubectl get deployments

You should see that 4 instances of the nginx-deployment pod are DESIRED
and, depending on when you ran the command, the values in the CURRENT,
UP-TO-DATE and AVAILABLE columns my be more, fewer or the same number
as the update happens.

5. In the terminal where you are watching the pods enter Ctrl+c to stop the
watch command

6. Enter the following command to display information about the running
deployment of nginx:

kubectl describe deployment nginx-deployment

Notice the image version is now: nginx:1.9.0

31

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

7. In the terminal where you are watching the pods enter Ctrl+c to stop the
watch command

Summary:

In this exercise, you created a new manifest to update the running nginx

deployment. You then updated the deployment and verified that it was

updated.

(End of Exercise)

32

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 6 Create and Edit a Service for an Application

Description:

In this exercise, you expose a service running in a pod and then edit that

service.

Task 1: Examine a Manifest for the Service

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the nginx manifests and
display the contents of the nginx-service.yaml file:

cd ~/course_files/KUB201/labs/manifests/nginx/

cat nginx-service.yaml

You should see the following:

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30000
 selector:
 app: nginx

Review the contents of the file. Notice how the type of service is NodePort and
what port it is listening on.

Task 2: Define the Service

1. To define the service in the cluster, open a terminal and enter the following

33

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

command:

kubectl apply -f nginx-service.yaml

You should see the service nginx-service was created.
If you still have an nginx-deployment running from a previous exercise
proceed to the next step.
If a previous nginx-deployment is not running, enter the following command
to define an nginx web server to test the service:

kubectl apply -f nginx-deployment.yaml

2. Enter the following command to display the services:

kubectl get services

You should see that the nginx-service service is defined. Notice the 80:30000
under ports showing external port 30000 will be redirected into internal port 80.
This 30000 is the NodePort which you saw in the service manifest.

Task 3: Access the Exposed Service

1. On the management workstation, in the browser of your choice, go to:

http://worker01.example.com:30000

You should see the “Welcome to nginx” web page.

Task 4: Edit the Service

1. Enter the following command to edit the nginx service:

kubectl edit service nginx-service

You should be presented with the yaml output in your default terminal editor.
2. Find the section of the file titled: spec. Change the NodePort port and then

save your file:
The spec section of the file should be similar to this:

spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 31000

34

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 selector:
 app: nginx

Change the nodePort value in red. After saving and exiting, you should see the
message:

service/nginx-service edited

3. Enter the following command to display the services:

kubectl get services

You should see that the nginx-service service now has the new port.

Note:
The kubectl edit command is not limited to only editing services. Other
Kubernetes functions can be edited on demand for troubleshooting
purposes.

Task 5: Review Service

1. On the management workstation, in the browser of your choice go to:

worker01.example.com:31000

You should see the same nginx “Welcome to nginx” web page but with the new
nodePort.

Task 6: Delete the Service

1. Enter the following command to delete the nginx service:

kubectl delete service nginx-service

The service should have been deleted.
2. Enter the following command to display the services:

kubectl get services

You should no longer see the service listed.

Summary:

35

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

In this exercise, you defined a NodePort service in the cluster exposing

NodePort 30000 that allowed access to the nginx pod running on the cluster.

You then tested the nginx pod in a web browser. You then edited the service

yaml and changed the NodePort to a different port and tested it again. Finally

you deleted the service.

(End of Exercise)

36

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 7 Use Environment Variables in a Pod

Description:

In this exercise, you will deploy a simple container setting an environment

variable in the container in the process.

Task 1: Examine the Manifest for the Pod

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the envar manifest and
display the contents of the envar-demo.yaml file:

cd ~/course_files/KUB201/labs/manifests/envars/

cat envar-demo.yaml

You should see the following:

kind: Pod
apiVersion: v1
metadata:
 name: envar-demo
 labels:
 purpose: demonstrate-envars
spec:
 containers:
 - name: envar-demo-container
 image: gcr.io/google-samples/node-hello:1.0
 env:
 - name: DEMO_GREETING
 value: "SUSE Rocks!"

Notice the environment variable, DEMO_GREETING will be given the value “SUSE
Rocks!” in the pod when it is deployed.

37

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 2: Deploy the Pod

1. To deploy the pod, open a terminal and enter the following commands:

kubectl apply -f envar-demo.yaml

You should see the deployment envar-demo was created.
2. Enter the following command to view the deployed pods:

kubectl get pods

You should see a single instance of the envar-demo pod running.

Task 3: Display the Environment Variable in the Container

1. To enter the pod, open a terminal and enter the following command:

kubectl exec -it envar-demo -- bash

You should now be at a bash prompt in the container.
2. Enter the following command to display the environment variables:

printenv

You should see the environment variables that are set in the container. In this
list you should see the DEMO_GREETING variable is set to “SUSE Rocks!”.
If you have trouble seeing it, try this:

printenv | grep SUSE

3. Enter the following command to exit the container:

exit

You should be back on the management workstation.

Task 4: Delete the Pod

1. Enter the following command to delete the pod:

kubectl delete pod envar-demo

You should see the pod envar-demo was deleted.

38

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Summary:

In this exercise you launched a simple container setting an environment

variable in the container in the process. You then launched a bash shell inside

the container and displayed the environment variable that was set.

(End of Exercise)

39

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 8 Use ConfigMaps with a Pod

Description:

In this exercise, you will deploy a simple container setting environment

variables using a ConfigMap in the container in the process.

Task 1: Display the Manifests for the ConfigMap and Pod

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the ConfigMap related
manifests and display the contents of the my-configmap.yaml file:

cd ~/course_files/KUB201/labs/manifests/configmaps/

cat my-configmap.yaml

You should see the following:

kind: ConfigMap
apiVersion: v1
metadata:
 name: my-configmap
data:
 CONFIGMAP_VAR1: configmap_value_1
 CONFIGMAP_VAR2: configmap_value_2

Notice the two variables that are being set along with their values.
2. Enter the following command to display the contents of the configmap-

demo.yaml file:

cat configmap-demo.yaml

You should see the following:

apiVersion: v1
kind: Pod
metadata:
 name: configmap-demo

40

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 labels:
 purpose: demonstrate-configmaps
spec:
 containers:
 - name: configmap-demo-container
 image: gcr.io/google-samples/node-hello:1.0
 envFrom:
 - configMapRef:
 name: my-configmap

Notice the pod will read the environment variables from the configMap named
my-configmap when the pod is deployed.

Task 2: Deploy the configMap and Pod

1. To deploy the pod, open a terminal and enter the following command:

kubectl apply -f configmap-demo.yaml

You should see the deployment configmap-demo was created.
2. Enter the following command to view the deployed pods:

kubectl get pods

You should see a single instance of the configmap-demo pod running.

Task 3: Display the Environment Variables in the Container

1. To enter the pod, open a terminal and enter the following command:

kubectl exec -it configmap-demo -- bash

You should now be at a bash prompt in the container.
2. Enter the following command to display the environment variables:

printenv

You should see the environment variables that are set in the container. In this
list you should see the CONFIGMAP_VAR1 and CONFIGMAP_VAR2 variables are
set to their corresponding values.
If you have trouble seeing it, try this:

printenv | grep CONFIGMAP_VAR

41

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3. Enter the following command to exit the container:

exit

You should be back on the management workstation.

Task 4: Delete the Pod

1. Enter the following command to delete the pod:

kubectl delete pod configmap-demo
kubectl delete configmap my-configmap

You should see the pod configmap-demo pod and my-configmap
ConfigMap were deleted.

Summary:

In this exercise you launched a simple container setting environment

variables in the container though a configMap in the process. You then

launched a bash shell inside the container and displayed the environment

variables that were set.

(End of Exercise)

42

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 9 Define and Access Secrets as Volumes

Description:

In this exercise you define a secret using text file and then retrieve it using the

kubectl command. You then access the secret as a volume in a pod.

Task 1: Define the Secret

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the secrets files manifests
and display the contents of the mysecret1.txt file:

cd ~/course_files/KUB201/labs/manifests/secrets/

cat mysecret1.txt

You should see the following:

username: user1
password: password1

2. Create a secret from the mysecret1.txt file:

kubectl create secret generic mysecret1 \
 --from-file=mysecret1.txt

3. Confirm that the secret is available:

kubectl get secrets

You should see your new secret with an Opaque type.
4. Enter the following command to display information about the secret:

kubectl describe secret mysecret1

You should see that Data in the secret is a single file named mysecret1.txt
that is 36 bytes in size.

43

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 2: Deploy a Pod that Uses the Secret

1. Enter the following command to examine the podsecret1.yaml manifest:

cat podsecret1.yaml

You should see the following:

apiVersion: v1
kind: Pod
metadata:
 name: podsecret1
spec:
 containers:
 - name: opensusepod
 image: opensuse/leap
 command:
 - "bin/bash"
 - "-c"
 - "sleep 10000"
 volumeMounts:
 - name: secretmnt
 mountPoint: "/mnt"
 volumes:
 - name: secretmnt
 secret:
 secretName: mysecret1

Notice the volumes and volumeMount sections in the manifest.
2. Enter the following command to deploy the test pod:

kubectl apply -f podsecret1.yaml

You should see the pod podsecret1 was created.

Task 3: Access the Secret in the Pod

1. You can access the newly created secret by entering into the pod:

kubectl exec -it podsecret1 bash

You should now be inside of the podsecret1 container and you should see a
new command prompt.

2. Enter the following command to review the secret that you imported into the
pod

cat /mnt/mysecret1.txt

44

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

You should see the contents of mysecret1.txt displayed.
The secret will only be available in kubernetes to users who have access to it.
It is also only available to processes running in this app. Other apps and users
without permission would not be able to see it.

3. Exit the shell to return to your normal command line

Task 4: Delete the Pod and the Secret

1. Enter the following command to delete the pod:

kubectl delete pod podsecret1

The pod should be deleted.
2. Enter the following command to delete the secret:

kubectl delete secret mysecret1

The secret should have been deleted.

Summary:

In this exercise you defined a secret from a text file in the cluster. You then
exposed that secret to a pod as a volume and then accessed the secret in
the pod.

(End of Exercise)

45

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 10 Define and Access Secrets as Environment Variables

Description:

In this exercise, you will define a secret using a manifest and then retrieve it

using the kubectl command. You then access the secret values as

environment variables in a pod.

Task 1: Define the Secret

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the secrets files manifests
and display the contents of the mysecret2.yaml file:

cd ~/course_files/KUB201/labs/manifests/secrets/

cat mysecret2.yaml

You should see the following:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret2
type: Opaque
data:
 # username=${echo "user2" | base64)
 # password=${echo "password2" | base64)
 username: dXNlcjIK

 password: cGFzc3dvcmQyCg==

Notice the comments that describe how the username and password values
where generated using the base64 command. Data stored in data: fields
must be base64 encoded. The values will be decoded when they are
accessed.

2. Create a secret from the mysecret2.yaml file:

kubectl apply -f mysecret2.yaml

46

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3. Confirm that the secret is available:

kubectl get secrets

You should see your new secret with an Opaque type.
4. Enter the following command to display information about the secret:

kubectl describe secret mysecret2

You should see that Data in the secret is a password that is 10 bytes in size and
a username that is 5 bytes in size.

Task 2: Deploy a Pod that Uses the Secret

1. Enter the following command to examine the podsecret2.yaml manifest:

cat podsecret2.yaml

You should see the following:

apiVersion: v1
kind: Pod
metadata:
 name: podsecret2
spec:
 containers:
 - name: opensusepod
 image: opensuse/leap
 command:
 - "bin/bash"
 - "-c"
 - "sleep 10000"
 env:
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret2
 key: username
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysecret2
 key: password

Notice the env: section defining 2 environment variables in the manifest.
2. Enter the following command to deploy the test pod:

47

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kubectl apply -f podsecret2.yaml

You should see the pod podsecret2 was created.

Task 3: Access the Secret in the Pod

1. You can access the newly created secret by entering into the pod:

kubectl exec -it podsecret2 -- bash

You should now be inside of the podsecret2 container and you should see a
new command prompt.

2. Enter the following commands to review the secret values that you imported
into the pod

echo $SECRET_USERNAME

You should see the value of user2 displayed.

echo $SECRET_PASSWORD

You should see the value of password2 displayed.
The secret will only be available in Kubernetes to users who have access to it.
It is also only available to processes running in this app. Other apps and users
without permission would not be able to see it.

3. Exit the shell to return to your normal command line

Task 4: Delete the Pod

1. Enter the following command to delete the pod:

kubectl delete pod podsecret2

The pod should be deleted.
2. Enter the following command to delete the secret:

kubectl delete secret mysecret2

The secret should have been deleted.

Summary:

48

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

In this exercise, you defined a secret from a manifest in the cluster. You then
exposed that secret to a pod as environment variables and then accessed
the secret values in the pod.

(End of Exercise)

49

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 11 Work with Labels and Selectors

Description:

In this exercise you will deploy a set of pods with predefined labels. You will

then use selectors to select specific labels and then delete those pods.

Task 1: Deploy Pods

1. On the management workstation, in a terminal, enter the following command
to deploy the pods used for this exercise:

kubectl apply -f ~/course_files/KUB201/labs/manifests/labels/

2. Confirm that the pods are available:

kubectl get pods

You should now see pod1 through pod5 created. If they do not have the status
"Running", wait a few second and rerun the command. Wait until all pods are
Running before continuing with the exercise.

Task 2: Select Pods by Band

1. On the management workstation, in a terminal, enter the following command
to select pods with the band of beatles:

kubectl get pods --selector band=beatles

You should only see pod3 and pod4 listed.
Why weren't pod 1 and pod 2 listed? Aren't they Beatles?
Enter the following commands to display more information about pods1 and
pod2:

kubectl describe pod pod1

Notice the typo in the labels section: bans=beatles

50

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kubectl describe pod pod2

Notice the different label name: owner=beatles
2. Select pods with the owner of monkees:

kubectl get pods --selector band=monkees

You should only see pod5.

Task 3: Create a Label

1. On the management workstation, in a terminal, enter the following command
to apply a new label to pod5:

kubectl label pods pod5 surname=jones

2. Select pods with the surname label with a value of jones:

kubectl get pods -l surname=jones

You should only see pod5. The option -l is a shorter way of using a selector
than --selector.

Task 4: Delete Pods by Label

1. On the management workstation, in a terminal, enter the following command
to view all pods and their labels:

kubectl get pods --show-labels

You should see that all of the pods have some different labels but a few have
the same band.

2. Delete all of the pods with the band of beatle and monkee:

kubectl delete pods -l 'band in (beatle, monkee)'

kubectl get pods

Notice that only pods 3-5 were deleted because they are the only ones that
match the labels band=beatles and band=monkees.

3. Delete the remaining pods and confirm that all pods have been deleted:

kubectl delete -f ./

kubectl get pods

51

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Summary:

In this exercise you deployed a set of pods, reviewed their labels, added a

label, and finally deleted them by their label.

(End of Exercise)

52

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 12 Work with Node Selectors

Description:

In this exercise you will attach labels to nodes. You will then deploy a set of

pods with predefined node selectors related to those labels and view where

the pods are deployed.

Task 1: Attach Labels to Nodes

1. On the management workstation, in a terminal, enter the following
commands to attach labels to some of the nodes:

kubectl label node worker01.example.com band=beatles

kubectl label node worker02.example.com band=monkees

2. Confirm that the labels are available:

kubectl get nodes --show-labels

You should see the nodes listed with their assigned labels.
3. Enter the following command to display more detailed information about the

worker01 node:

kubectl describe node worker01.example.com

You should see more detailed information about the node displayed.
Notice the assigned labels in the Labels: section. Also notice the pods that are
currently running on the node in the Non-terminated Pods: section.
If desired, run the command for the other worker nodes (worker02, worker03).

Task 2: Deploy Pods

1. On the management workstation, in a terminal, enter the following
commands to deploy the pods used for this exercise:

53

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

cd ~/course_files/KUB201/labs/manifests/nodeselectors/

kubectl apply -f ./

2. Confirm that the pods are available:

kubectl get pods

You should now see pods with names such as paul, davy, john, etc. were
created. If they do not have the status "Running", wait a few second and rerun
the command. Wait until all pods are Running before continuing with the
exercise.

Task 2: Select Pods by Band

1. On the management workstation, in a terminal, enter the following command
to select pods with the band of beatles:

kubectl get pods -o wide --selector band=beatles

You should only see pods john, paul, george and ringo listed.
Notice which node they are running on.

2. Select pods with the band of monkees:

kubectl get pods -o wide --selector band=monkees

You should only see pods davy, micky, michael and peter listed.
Notice which node they are running on.

Task 4: Delete Pods by Label

1. On the management workstation, in a terminal, enter the following command
to view all pods and their labels:

kubectl get pods --show-labels

You should see that all of the pods have some different label but a few have
the same band.

2. Delete all of the pods with the band of beatles and monkees:

kubectl delete pods -l 'band in (beatles, monkees)'

3. Confirm that all pods have been deleted:

kubectl get pods

54

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Summary:

In this exercise you attached labels to some nodes. You then deployed a set

of pods, reviewed their labels, and location and finally deleted them by their

label.

(End of Exercise)

55

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 13 Work with Taints and Tolerations

Description:

In this exercise you will taint nodes with specific restrictions. You will then

deploy a set of pods with predefined tolerations related to those taints and

view where the pods are deployed.

Task 1: Add Taints to Nodes

1. On the management workstation, in a terminal, enter the following
commands to taint the nodes relative to a specific band:

kubectl taint node worker01.example.com \
 band=beatles:NoSchedule

kubectl taint node worker02.example.com \
 band=monkees:NoSchedule

kubectl taint node worker03.example.com \
 band=beachboys:NoSchedule

2. Enter the following command to display more detailed information about the
worker01 node:

kubectl describe node worker01.example.com

You should see more detailed information about the node displayed.
Notice the pods associated with the node in the Taints: section. Also notice the
pods that are currently running on the node in the Non-terminated Pods:
section.
Run the command for the other worker nodes (worker02, worker03).

Task 2: Deploy Pods

1. On the management workstation, in a terminal, enter the following

56

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

commands to deploy the pods used for this exercise:

cd ~/course_files/KUB201/labs/manifests/taints_tolerations/

kubectl apply -f ./

2. Confirm that the pods are available:

kubectl get pods

You should now see pods with names such as paul, davey, john, etc. were
created. If they do not have the status "Running", wait a few second and rerun
the command. Wait until all pods are Running before continuing with the
exercise.

Task 3: Select Pods by Band

1. On the management workstation, in a terminal, enter the following command
to select pods with the band of beatles:

kubectl get pods -o wide --selector band=beatles

You should only see pods john, paul, george and ringo listed.
Notice which node they are running on.

2. Select pods with the band of beachboys:

kubectl get pods -o wide --selector band=beachboys

You should only see pods al, brian, carl , dennis and mike listed.
Notice which node they are running on.

3. Select pods with the band of monkees:

kubectl get pods -o wide --selector band=monkees

You should only see pods davy, micky, michael and peter listed.
Notice that they are still in pending state and not running anywhere.

4. In the text editor of your choice, open the manifests for the monkees pods
(davy, micky, michael, peter) to be edited
Using the other manifests ad a guide, update the monkees pods so that they
will run on the worker01 node.

5. Enter the following command to delete the monkees pods:

kubectl delete pods -l band=monkees

57

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

The pods should be deleted.
6. Redeploy the monkees pods:

kubectl apply -f davy.yaml
kubectl apply -f micky.yaml
kubectl apply -f michael.yaml
kubectl apply -f peter.yaml

7. Select pods with the band of monkees:

kubectl get pods -o wide --selector band=monkees

You should only see pods davy, micky, michael and peter listed.
Are they running on the worker01 node? (If not, examine and correct the
manifests for the pods, delete and redeploy them.)

Task 4: Delete Pods by Label

1. On the management workstation, in a terminal, enter the following command
to view all pods and their labels:

kubectl get pods --show-labels

You should see that all of the pods have some different labels but a few have
the same band.

2. Delete all of the pods with the band of beatles, beachboys and monkees:

kubectl delete pods -l 'band in (beatles, monkees, beachboys)'

3. Confirm that all pods have been deleted:

kubectl get pods

Task 5: Remove Taints from Nodes

1. On the management workstation, in a terminal, enter the following
commands to taint the nodes relative to a specific band:

kubectl taint node worker01.example.com \
 band=beatles:NoSchedule-

kubectl taint node worker02.example.com \
 band=monkees:NoSchedule-

58

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kubectl taint node worker03.example.com \
 band=beachboys:NoSchedule-

2. Enter the following command to display more detailed information about the
worker01 node:

kubectl describe node worker01.example.com

In the Taints: section you should see <none> showing that there are no longer
taints on the node.
Repeat the command for the other nodes (worker02, worker03). You should
see the same on those nodes.

Summary:

In this exercise you added taints to some nodes. You then deployed a set of

pods, reviewed their labels, and check if and where they were running. You

then updated the manifests to correct errors, redeployed some pods . Finally

you deleted the pods by their labels.

(End of Exercise)

59

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 14 Scale a Deployment

Description:

In this exercise, you scale out a running pod.

Dependencies

The exercise named Update Pods in a Deployment must be completed

before performing this exercise.

Task 1: Examine a New Manifest for the Deployment

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the nginx manifests and
display the contents of the nginx-scale.yaml file:

cd ~/course_files/KUB201/labs/manifests/nginx/

cat nginx-scale.yaml

You should see the following:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 revisionHistoryLimit: 5
 minReadySeconds: 20
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 25%
 maxSurge: 2

60

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.0
 ports:
 - containerPort: 80

Take note of the replicas:, revisionHistoryLimit: and strategy:
sections.

Task 2: Scale the Deployment

1. To scale the deployment, open a terminal and enter the following command:

kubectl apply -f nginx-scale.yaml

You should see the deployment nginx-deployment was configured.
2. Enter the following command to display the deployments:

kubectl get deployments

You should see that two instances of the nginx-deployment pod are now
running.

3. Enter the following command to display the deployed pods:

kubectl get pods

You should see two instances of the nginx-deployment pod running.

Task 3: Manually Scale the Deployment Out

1. To manually scale the deployment back out, open a terminal and enter the
following command:

kubectl scale deployment nginx-deployment --replicas=10

2. Enter the following command to display the deployments:

watch kubectl get deployments

This will continuously run the get command. You should see that ten instances

61

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

of the nginx-deployment pod are running after a few seconds.
Hit Ctrl+c to close this screen.

3. Enter the following command to display the deployed pods:

kubectl get pods

You should see ten instances of the nginx-deployment pod running or being
created.

4. Enter the following command to scale the deployment back to its original:

kubectl apply -f nginx-update.yaml

The deployment should have been scaled back.
5. Enter the following command to display the deployed pods:

kubectl get pods

You should see only 4 pods.
6. Remove the deployment:

kubectl delete -f nginx-update.yaml

Summary:

In this exercise you examined a new manifest for an existing deployment that

specified a smaller number of replicas. You then applied the updated

manifest to scale in the deployment. Finally you applied the original manifest

to scale the deployment back out and then deleted the entire deployment.

(End of Exercise)

62

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3- 15 Configure Horizontal Pod Autoscaling

Description:

In this exercise, you configure and then test horizontal autoscaling of pods in

a deployment.

Task 1: Deploy the AutoScaler Manifests

1. On the management workstation, in a terminal, enter the following
commands to deploy the pods/services:

cd ~/course_files/KUB201/labs/manifests/hpa

kubectl apply -f app/

You should see the following were created (not necessarily in this order):

deployment.apps/php-apache created
service/php-apache created
horizontalpodautoscaler.autoscaling/php-apache created

2. Enter the following command to view the deployments:

watch kubectl get deployments

You should see the php-apache and load-generator deployments listed.
3. Open a second terminal and enter the following command to view the

autoscalers:

watch kubectl get hpa

You should see the autoscaler php-apache listed. Notice the percentages in
the TARGETS column. (It may take a minute or few for the percentage to show
up on the left side of the / in the TARGETS column so be patient.)

4. Enter the following command to view the details of the autoscaler:

kubectl describe hpa php-apache

63

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

You should see details about the autoscaler displayed.
5. Run the watch command for the autoscaler as well:

watch kubectl get hpa

The output should refresh every 2 seconds.

Task 2: Cause the Deployment To Scale Out

1. On the management workstation, in another terminal, enter the following
command to deploy the load-generator deployment:

kubectl apply -f load/

You should see the following was created:

deployment.apps/load-generator created

2. Look at the terminal that is watching the kubectl get deployments
command
Notice that when the percentages exceed 50% in the other window and the
additional pods are created that the numbers here are adjusted accordingly.
If the scale out goes on long enough notice that the numbers do not exceed
the MAXPODS value defined in the autoscaler.

Task 3: Cause the Deployment To Scale Back

1. On the management workstation, in the second terminal, enter the following
command to delete the load-generator deployment:

kubectl delete -f load/

2. In the first terminal, after a short while you should see the percentages drop
(you may see them increase before they drop due to a lag in the autoscaler
getting data from the monitoring).
A short while after the percentages drop you should see the number of php-
apache pods decrease (this may take quite a while to happen so be patient).

Task 4: Clean Up the Deployments

1. In the first terminal, enter the following commands to delete all of the objects:

64

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kubectl delete -f app/

In the terminals watching the other commands you should see the objects
being removed.

2. Stop all of the watch commands in the other terminals by selecting the
terminal and entering: Ctrl+c

Summary:

In this exercise you deployed manifests for an application, a service to export

the application, and another application use to generate load and an

autoscaler to scale the application. As the load increased the application was

scaled out. Finally you scaled back the application and removed the objects.

(End of Exercise)

65

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

4 Application Management on Kubernetes with
Kustomize

Description:

This section covers Kubernetes application management with Kustomize.

66

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

4- 1 Manage Applications with Kustomize

Description:

In this exercise you use kustomize via kubeclt apply -k to deploy different

application stacks.

Task 1: Examine the Base Manifests

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the kustomize manifests
and display the contents of the directory tree:

cd ~/course_files/KUB201/labs/manifests/nginx-kustomize/

ls -l

You should see a directory named base and one named overlays.
2. Enter the following command to display the contents of the base directory:

ls -l base

You should see the following files:

deployment.yaml
kustomization.yaml
service.yaml

3. Enter the following command to display the contents of the
kustomization.yaml file:

cat base/kustomization.yaml

You should see the following:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
 - deployment.yaml

67

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 - service.yaml

Notice that the file refers to 2 resources, the deployment and the service. If you
were to deploy the base application using kustomize these are what would be
deployed.

4. Enter the following commands to display the contents of the deployment and
service manifests:

cat base/deployment.yaml

You should see the following:

apiVersion:apps/v1
kind: Deployment
metadata:
 name: nginx-k-deployment
 labels:
 owner: examplecorp
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

Notice the name, labels, replicas and image version tag.

cat base/service.yaml

You should see the following:

apiVersion: v1
kind: Service
metadata:
 name: nginx-k-service
spec:
 type: NodePort
 ports:

68

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 - port: 80
 selector:
 app: nginx

Notice the name and the lack of NodePort.

Task 2: Deploy the Base Application

1. Enter the following command to deploy the base application:

kubectl apply -k base

The deployment and service should have been created.
2. Enter the following commands to display the deployments and services:

kubectl get deployments

Yous should see the nginx-k-deployment listed.

kubectl get services

You should see the nginx-k-service listed.
Notice the nodePort assigned to the service is a randomly chosen port.

3. Enter the following command to display additional information about the
deployment:

kubectl describe deployment nginx-k-deployment

Notice the name, labels, number of replicas and the container name and
version.

Task 3: Examine the Overlay Manifests

1. Enter the following command display the contents of the overlays/prod
directory tree:

ls -l overlays/prod

You should see the following files:

kustomization.yaml
nodeport.yaml
replicas.yaml

69

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

2. Enter the following command to display the contents of the
kustomization.yaml file:

cat overlays/prod/kustomization.yaml

You should see the following:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namePrefix: prod-
commonLabels:
 variant: products
bases:
- ../../base
patches:
- replicas.yaml
- nodeport.yaml
images:
 - name: nginx
 newTag: 1.9.0

Notice the relative path to the base manifests, additional label, the patch files
and the image with its version tag.

3. Enter the following commands to display the contents of the deployment and
service manifests:

cat overlays/prod/replicas.yaml

You should see the following:

apiVersion:apps/v1
kind: Deployment
metadata:
 name: nginx-k-deployment
spec:
 replicas: 4

Notice the greatly abbreviated deployment manifest with only the replicas
property being set.

cat overlays/prod/nodeport.yaml

You should see the following:

apiVersion: v1
kind: Service
metadata:

70

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 name: nginx-k-service
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30100

Notice the greatly abbreviated service manifest with only the nodePort
property being set.

4. Using the same commands as above, examine the stage/ and dev/ directory
trees and files
Note how they differ from the base and from each other.

Task 4: Deploy the Prod, Stage and Dev Applications

1. Enter the following command to deploy the base application:

kubectl apply -k overlays/prod

The deployment and service should have been created.
2. Enter the following commands to display the deployments and services:

kubectl get deployments

You should see the prod-nginx-k-deployment listed in addition to the base
nginx-deployment deployment.

kubectl get services

You should see the prod-nginx-k-service listed in addition to the base
nginx-service service.
Notice the nodePort assigned to the service is not a randomly chosen port but
the one specified in the overlay manifest.

3. Enter the following command to display additional information about the
deployment:

kubectl describe deployment prod-nginx-k-deployment

Notice the name, labels, number or replicas and the container name and
version. Notice how they are different from the base deployment.

4. Using the same commands as above, deploy the stage and dev version of the
apps

71

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Notice the difference from the base deployment/service and the other
deployments/services.

Task 5: Delete the Base, Prod, Stage and Dev Applications

1. Enter the following commands to delete the base, prod, stage and dev
applications:

kubectl delete -k base

kubectl delete -k overlays/prod

kubectl delete -k overlays/stage

kubectl delete -k overlays/dev

The deployments and services should have been deleted.
2. Enter the following command to display the deployments and services:

kubectl get deployments

You should see none of the deployments.

kubectl get services

You should see none of the services

Task 6: (OPTIONAL) Experiment with Modifying the Different Applications

1. To explore kustomize in greater depth, try doing the following:
◦ Modify the prod application to use a different application port and number

of replicas without affecting the other applications by editing the least
number of files.

◦ Modify all of the applications to use a different application port by editing
the least number of files.

◦ Configure the dev application to deploy an additional busybox deployment
in addition to the nginx deployment.

72

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Summary:

In this exercise you examined the different manifests for the base application

stack and prod, stage and dev application stacks. You deployed the base

application stack as well as the prod, stage and dev application stacks and

compared them. You then deleted all of the application stacks. Optionally you

experimented with modifying the different application stacks.

(End of Exercise)

73

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

5 Application Management on Kubernetes with Helm

Description:

This section covers Kubernetes application management with Helm.

74

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

5- 1 Add a Repository to Helm

Description:

In this exercise you add the Bitnami Helm Repository.

Task 1: Add the Bitnami Repository

1. In a terminal, enter the following command to add the default repository to
your Helm configuration:

helm repo add bitnami https://charts.bitnami.com/bitnami

2. Enter the following command to confirm that the repository is now added:

helm repo list

You should now see the bitnami repository listed.
3. Enter the following command to update the repositories:

helm repo update

The repositories should have been updated.

Summary:

In this exercise you added the Bitnami repository to Helm.

(End of Exercise)

75

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

5- 2 Deploy an Application with Helm

Description:

In this exercise, you deploy an application from a Helm chart using the helm

command.

Dependencies:

The bitnami Helm repository must be added before you perform this exercise.

Task 1: Create Helm Chart Config File

1. On the management workstation, in a terminal, enter the following command
to search for a dockuwiki Helm chart:

helm search repo dokuwiki

You should see a helm chart named bitnami/dokuwiki listed with its
available chart version.

2. Enter the following command to view the default configuration for the dokuwiki
chart:

helm inspect values bitnami/dokuwiki | less

You should see the configuration displayed in the less pager. Page through the
configuration to see what variables are being set.

3. In the text editor of your choice, create/open the ~/dokuwiki-values.yaml
file

4. Enter the following in the file:

dokuwikiUsername: user
dokuwikiPassword: password123
service:
 type: NodePort
persistence:
 enabled: false

76

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

storageClass: nfs-client
accessMode: ReadWriteOnce
size: 8Gi

(The commented out lines are there in case you want to experiment with using
a storageClass persistent storage back end.)

5. Save the file and close the text editor

Task 2: Deploy the Helm Chart

1. In a terminal, enter the following command to view the current Helm releases:

helm list

You should not see the dokuwiki application listed.
2. Enter the following command to deploy the chart:

helm install mywiki -f ~/dokuwiki-values.yaml bitnami/dokuwiki

You should see that the chart was deployed.
3. Enter the following command to view the status of the mywiki release:

helm status mywiki

You should see output similar to what was displayed when the chart was first
deployed.

4. You can also enter the following kubectl commands:

kubectl get deployments
kubectl get pods
kubectl get services

Notice that you see that same info about the deployed
deployments/pods/services as if you were to have deployed them from
manifests.

Task 3: Access the Application Deployed by the Helm Chart

1. Enter the following command to list the mywiki service:

kubectl get services | grep mywiki

You should see the mywiki-dokuwiki service listed.

77

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Notice the IP and port(s) the application is listening on. The NodePort(s) that
the application is listening on are the number after the colon (:) in the
PORT(S) column.
Example: 80:32313/TCP,443:31034/TCP
In this example the NodePorts are 32313 for http and 31034 for https.
Record the http NodePort:

DOKUWIKI_PORT=

2. Open a web browser and point to:

http://worker01.example.com:DOKUWIKI_PORT

You should see the My Wiki page displayed.
3. On the top right of the page click: Log In
4. Enter the following credentials:

Username: user
Password: password123

You should be logged in.
(After logging in you may see a number of warnings of available hotfixes
and/or updates. You may ignore these warnings.)

Task 4: Delete a Deployed Helm Chart Release

1. In a terminal, enter the following command to delete the mywiki release:

helm uninstall mywiki --keep-history

You should see that the release was deleted.
2. Enter the following command to list the current Helm releases:

helm list

You should no longer see the dokuwiki chart named mywiki displayed.
3. Enter the following command to display the status of the mywiki release:

helm status mywiki

Notice that the STATUS is UNINSTALLED but also that it remembered that it had
been deployed with that date listed in LAST DEPLOYED.

78

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

4. Enter the following command to remove the mywiki release from the history:

helm uninstall mywiki

The release should be uninstalled and its history should be deleted.
5. Enter the following command to display the status of the mywiki release:

helm status mywiki

You should no longer see the history of the release.

Summary:

In this exercise, you first deployed a Helm chart. You then accessed the

application that was deployed. Finally you deleted the release.

(End of Exercise)

79

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

6 Ingress Networking with an Ingress Controller in
Kubernetes

Description:

This section covers ingress networking in Kubernetes with an ingress controller.

80

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

6- 1 Configure Ingress for an Application

Description:

In this exercise you use the Ingress Controller to create the simple websites

and then access them through a single address.

Dependencies:

An Ingress controller (Nginx, Traefik, etc) must be deployed in the cluster

before performing this exercise.

Task 1: Deploy Websites

1. On the management workstation, in a terminal, enter the following
commands to switch to the directory containing the ingress manifests and
display the contents of one of the app yaml files:

cd ~/course_files/KUB201/labs/manifests/ingress

cat blue.yaml

You should see the following:

kind: Pod
apiVersion: v1
metadata:
 name: blue-app
 labels:
 app: blue-app
spec:
 containers:
 - name: blue-app
 image: hashicorp/http-echo
 args:
 - “-text=blue”

81

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kind: Service
apiVersion: v1
metadata:
 name: blue-service
spec:
 selector:
 app: blue-app
 ports:
 - port: 5678 # Default port for image

Notice that this manifest defines both an application and a service for the
application. In this case the “blue-app” will return the text “blue” when queried.
The red and green apps are configured similarly and will return their
respective colors.

2. Enter the following commands to deploy the test websites:

kubectl apply -f green.yaml

kubectl apply -f blue.yaml

kubectl apply -f red.yaml

3. Confirm that the pods are ready:

kubectl get pods

Each pod should be in a running status.

Task 2: Deploy the Ingress Rules

1. On the management workstation, in a terminal, enter the following command
to display the contents of the color-routes.yaml file:

cat color-routes.yaml

You should see the following:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: color-ingress
 annotations:
 ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:

82

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 paths:
 - path: /red
 backend:
 serviceName: red-service
 servicePort: 5678
 - path: /green
 backend:
 serviceName: green-service
 servicePort: 5678
 - path: /blue
 backend:
 serviceName: blue-service
 servicePort: 5678

Notice in the rules section that each of the color named apps is given a
corresponding path that references the app’s service port. This will create a
new ingress for the green, blue, and red websites by forwarding any request to
the /red, /green, or /blue directories to the service with that name.

2. Enter the following command to deploy the ingress routing for the websites:

kubectl apply -f color-routes.yaml

3. Confirm that the ingress is available:

kubectl get ingresses.extensions

You should see the color-ingress available on port 80.
4. Enter the following command to review the ingress:

kubectl describe ingresses.extensions color-ingress

In the rules sections you should see:

 Host Path Backends
 ---- ---- --------
 *
 /red red-service:5678 (10.42.4.63:5678)
 /green green-service:5678 (10.42.4.63:5678)
 /blue blue-service:5678 (10.42.4.63:5678)

As in the color-route.yaml file, the /red directory will be forwarded to the
red-service, etc.

Task 3: Test the Ingress

1. On the management workstation, in a terminal, enter the following command

83

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

to test the ingress using the curl command:

curl http://worker01.example.com/red

curl http://worker01.example.com/green

curl http://worker01.example.com/blue

The output from each command should reflect the URL that command is
pointing to.

Summary:

In this exercise you tested the ingress on your cluster. You were able to create

an ingress route that routes traffic from one URL to 3 different pods via the

Kubernetes ingress.

(End of Exercise)

84

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

7 Storage in Kubernetes

Description:

This section covers persistent storage in Kubernetes.

85

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

7- 1 Configure Persistent Storage with NFS

Description:

In this exercise, you configure a persistent volume on an NFS server. You then

create a pod that updates a file on the persistent volume and a pod that

exports the file via http.

Task 1: Create the Persistent Volume on the NFS Server

1. In the management workstation, in a terminal, enter the following commands
to create the directories to use as the persistent volumes:

sudo mkdir -p /srv/nfs/vol-01

sudo chmod 777 /srv/nfs/vol-01

sudo mkdir -p /srv/nfs/vol-02

sudo chmod 777 /srv/nfs/vol-02

The /srv/nfs/vol-01 and /srv/nfs/vol-02 directories should now exist. The
/etc/exports file was already pre-configured to export the /srv/nfs
directory.

Task 2: Examine the Manifests for the Persistent Volumes

1. Enter the following commands to change to the directory containing the nfs-
pv manifests and display the contents of the nfs-pv-vol-01.yaml file:

cd ~/course_files/KUB201/labs/manifests/nfs-pv/

cat nfs-pv-vol-01.yaml

You should see the following:

86

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs-vol-01
 labels:
 volname: "vol-01"
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Recycle
 nfs:
 server: 172.30.201.2
 path: "/srv/nfs/vol-01"

Note label assigned to the volume and how the NFS shares are defined.
2. Enter the following command to display the contents of the nfs-pv-vol-

02.yaml file:

cat nfs-pv-vol-02.yaml

You should see the following:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs-vol-02
 labels:
 volname: "vol-02"
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Recycle
 nfs:
 server: 172.30.201.2
 path: "/srv/nfs/vol-02"

Note label assigned to the volume and how the NFS shares are defined.

Task 3: Examine the Manifest for the Persistent Volume Claim

1. Enter the following command to display the contents of nfs-pvc.yaml file:

87

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

cat nfs-pvc.yaml

You should see the following:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-claim
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Mi
 storageClassName: ""
 selector:
 matchLabels:
 volname: "vol-02"

Notice how the Persistent Volume Claim doesn’t define the storage volume,
only the Persistent Volume by name. Also notice that the storageClassName is
empty and notice which label is specified in the selector section.

Task 4: Examine the Manifest for the Busybox Instance

1. Enter the following command to display the contents of nfs-busybox-
deployment.yaml file:

cat nfs-busybox-deployment.yaml

You should see the following:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nfs-busybox
spec:
 selector:
 matchLabels:
 app: nfs-busybox
 replicas: 1
 template:
 metadata:
 labels:
 app: nfs-busybox
 spec:

88

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 containers:
 - image: busybox
 command:
 - sh
 - -c
 - 'while true; do date > /mnt/index.html; hostname >> /
mnt/index.html; sleep $(($RANDOM % 5 + 5)); done'
 imagePullPolicy: IfNotPresent
 name: busybox
 volumeMounts:
 # name must match the volume name below
 - name: nfs-vol
 mountPath: "/mnt"
 volumes:
 - name: nfs-vol
 persistentVolumeClaim:
 claimName: nfs-claim

Notice how the manifest is describing which mounts and which Persistent
Volume Claim is being utilized to use the NFS storage.

Task 5: Examine the Manifest for the Webserver Instance

1. Enter the following command to display the contents of nfs-web-
deployment.yaml file:

cat nfs-web-deployment.yaml

You should see the following:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nfs-web
spec:
 selector:
 matchLabels:
 app: nfs-web
 replicas: 1
 template:
 metadata:
 labels:
 app: nfs-web
 spec:
 containers:
 - name: web

89

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 image: nginx:1.9.0
 ports:
 - name: web
 containerPort: 80
 volumeMounts:
 - name: nfs-vol
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: nfs-vol
 persistentVolumeClaim:
 claimName: nfs-claim

Notice how the manifest is describing which mounts and which Persistent
Volume Claim is being utilized to use the NFS storage.

Task 6: Examine the Manifest for the Web Service

1. Enter the following command to display the contents of nfs-web-
service.yaml file:

cat nfs-web-service.yaml

You should see the following:

apiVersion: v1
kind: Service
metadata:
 name: nfs-web
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30080
 selector:
 app: nfs-web

Note the nodePort used to access the web server (30080).

Task 7: Deploy the Objects

1. To deploy the volumes/pods/service, open a terminal and enter the following
command:

kubectl apply -f ./

You should see the following were created (not necessarily in this order):

90

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

deployment.apps/nfs-busybox created
persistenvolume/nfs-vol-01 created
persistenvolume/nfs-vol-02 created
persistenvolumeclaim/nfs-claim created
deployment.apps/nfs-web created
service/nfs-web created

2. Enter the following command to view the deployments:

kubectl get deployments

You should see the nfs-busybox and nfs-web deployments listed.
3. Enter the following command to view the pods:

watch kubectl get pods

You should see the pods for the nfs-busybox and nfs-web deployments listed.
4. Enter the following command to view the persistent volumes:

kubectl get pv

You should see the persistent volumes nfs-vol-01 and nfs-vol-02 listed. Notice
that for nfs-vol-01:

Its RECLAIM POLICY is Recycle,
Its STATUS is Available
The CLAIM it is bound to is empty

Notice that for nfs-vol-02:

Its RECLAIM POLICY is Recycle,
its STATUS is Bound
The CLAIM it is bound to is default/nfs-sc-claim

5. Enter the following command to view the persistent volume claims:

kubectl get pvc

You should see the persistent volume claim nfs-claim listed.
Notice that its STATUS is Bound and the VOLUME it is bound to is nfs-vol-02.

Task 8: Test the Persistent Data

1. On the management workstation, open a web browser and point to:

http://worker01.example.com:30080

91

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

You will see the content of the index.html file. When you refresh the page you
should see the time stamp updating. (Also notice that if you change the URL to
the different worker nodes you will see the same thing.)

Task 9: Remove the Objects from the Cluster

1. In the first terminal, enter the following command to delete all of the objects:

kubectl delete -f ./

You should see that the objects were deleted.

Summary:

In this exercise, you examined manifests for two persistent volumes, a

persistent volume claim, a pod to that attached to the volume and writes

data to an index.html file in the volume, and a web server that attaches to

the volume and displays the index.html file. You then discovered which

volume the pods were attached to and verified that the index.html file was

being updated by looking at the file both on the NFS volume and the web

server. Finally you removed the deployments.

(End of Exercise)

92

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

7- 2 Configure Persistent Storage with an NFS
StorageClass

Description:

In this exercise, you configure a persistent volume claim against an NFS
storageClass. You then create a pod that updates a file on the persistent
volume and a pod that exports the file via http.

Task 1: Deploy the NFS storageClass

1. On the management workstation, enter the following commands to add the
helm repository that contains the storageClass provisioner

helm repo add nfs-subdir-external-provisioner \
 https://kubernetes-sigs.github.io/nfs-subdir-external-provisioner/

helm repo update

You should see that the repo was added and all helm repos were updated.
2. Enter the following command to deploy the storageClass provisioner:

helm install nfs-subdir-external-provisioner \
 nfs-subdir-external-provisioner/nfs-subdir-external-provisioner \
 --set nfs.server=172.30.201.2 \
 --set nfs.path=/srv/nfs

The storageClass provisioner should be deployed.
3. Enter the following commands to verify the deployment:

kubectl get deployments

You should see the nfs-subdir-external-provisioner deployment listed.

kubectl get storageclasses

You should see the nfs-client storageClass listed.

93

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 2: Examine the Manifest for the Persistent Volume

4. On the management workstation, enter the following commands to change
to the directory containing the nfs-pv-storage-class manifests and display

the contents of the nfs-sc-pvc.yaml file:

cd ~/course_files/KUB201/labs/manifests/nfs-pv-storage-class/

cat nfs-sc-pvc.yaml

You should see the following:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-sc-claim
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: "nfs-client"
 resources:
 requests:
 storage: 1Mi

Notice a value is specified in the storageClassName.

Task 3: Examine the Manifest for the Busybox Instance

1. Enter the following command to display the contents of nfs-sc-busybox-
deployment.yaml file:

cat nfs-sc-busybox-deployment.yaml

You should see the following:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nfs-sc-busybox
spec:
 selector:
 matchLabels:
 app: nfs-sc-busybox
 replicas: 1

94

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 template:
 metadata:
 labels:
 app: nfs-sc-busybox
 spec:
 containers:
 - image: busybox
 command:
 - sh
 - -c
 - 'while true; do date > /mnt/index.html; hostname >> /
mnt/index.html; echo "[storageClass]" >> /mnt/index.html; sleep $
(($RANDOM % 5 + 5)); done'
 imagePullPolicy: IfNotPresent
 name: busybox
 volumeMounts:
 # name must match the volume name below
 - name: nfs-sc-vol
 mountPath: "/mnt"
 volumes:
 - name: nfs-sc-vol
 persistentVolumeClaim:
 claimName: nfs-sc-claim

Notice how the manifest is describing which mounts and which Persistent
Volume Claim is being utilized to use the NFS storage.

Task 4: Examine the Manifest for the Webserver Instance

1. Enter the following command to display the contents of nfs-sc-web-
deployment.yaml file:

cat nfs-sc-web-deployment.yaml

You should see the following:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nfs-sc-web
spec:
 selector:
 matchLabels:
 app: nfs-sc-web
 replicas: 1
 template:

95

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 metadata:
 labels:
 app: nfs-sc-web
 spec:
 containers:
 - name: web
 image: nginx:1.9.0
 ports:
 - name: web
 containerPort: 80
 volumeMounts:
 - name: nfs-sc-vol
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: nfs-sc-vol
 persistentVolumeClaim:
 claimName: nfs-sc-claim

Notice how the manifest is describing which mounts and which Persistent
Volume Claim is being utilized to use the NFS storage.

Task 5: Examine the Manifest for the Web Service

1. Enter the following command to display the contents of nfs-sc-web-
service.yaml file:

cat nfs-sc-web-service.yaml

You should see the following:

apiVersion: v1
kind: Service
metadata:
 name: nfs-sc-web
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30180
 selector:
 app: nfs-sc-web

Note the nodePort used to access the web server (30180).

96

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 6: Deploy the Objects

1. To deploy the volumes/pods/service, open a terminal and enter the following
command:

kubectl apply -f ./

You should see the following were created (not necessarily in this order):

deployment.apps/nfs-sc-busybox created
persistenvolumeclaim/nfs-sc-claim created
deployment.apps/nfs-sc-web created
service/nfs-sc-web created

2. Enter the following command to view the deployments:

kubectl get deployments

You should see the nfs-sc-busybox and nfs-sc-web deployments listed.
3. Enter the following command to view the pods:

watch kubectl get pods

You should see the pods for the nfs-sc-busybox and nfs-sc-web
deployments listed.

4. Enter the following command to view the persistent volume claims:

kubectl get pv

You should see the persistent volume named pvc-<random_string> listed.
Notice that:

Its RECLAIM POLICY is Delete
Its STATUS is Bound
The CLAIM it is bound to is default/nfs-sc-claim

5. Enter the following command to view the persistent volume claims:

kubectl get pvc

You should see the persistent volume claim nfs-sc-claim listed.
Notice that its STATUS is Bound and the VOLUME it is bound to is the one in the
previous step.

97

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 7: Examine the Persistent Storage

1. On the management workstation, enter the following command to display the
contents of the NFS exported directory:

ls -l /srv/nfs/

You should see a new directory named:

default-nfs-sc-claim-pvc-<random_numbers_and_letters>

This is the volume that was created by the NFS storageClass.
2. Enter the following command to to view the contents of the index.html file in

that directory:

cat /srv/nfs/default-nfs-sc-claim*/index.html

You should see the data that was written by the busybox container.

Task 8: Test the Persistent Data

1. On the management workstation, open a web browser and point to:

http://worker01.example.com:30180

You will see the content of the index.html file. When you refresh the page you
should see the time stamp updating. (Also notice that if you change the URL to
the different worker nodes you will see the same thing.)

Task 9: Remove the Objects from the Cluster

1. In the terminal, enter the following commands to delete all of the objects:

kubectl delete -f ./

You should see that the objects were deleted.

Task 10: Reexamine the Persistent Storage

1. Enter the following command to display the contents of the NFS exported
directory:

ls -l /srv/nfs/

98

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

You should see a new directory named:

archived-default-nfs-sc-claim-pvc-<random_numbers_and_letters>

Notice that the persistent volume directory that was created has now been
renamed by the NFS storageClass. This behavior is configurable as you can
edit a value in the storage class’s deployment that tells it to delete the
persistent volume directory rather then rename (archive) it.

2. Enter the following command to remove the directory:

sudo rm -rf /srv/nfs/archived-default-nfs-sc-claim*

The directory should be gone.

Summary:

In this exercise, you deployed the storageClass provisioner, created manifests
for a persistent volume claim using a storageClass, a pod to that attached to
the volume and writes data to an index.html file in the volume, and a web
server that attaches to the volume and displays the index.html file. You then
verified that the index.html file was being updated by looking at the file both
on the NFS volume and the web server. Finally you removed the deployments
and the directory on the NFS server that corresponded to the persistent
volume.

(End of Exercise)

99

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

8 Resource Usage Control in Kubernetes

Description:

This section covers resource usage control in Kubernetes using Limits,
Requests and Quotas.

100

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

8- 1 Define Default Limits for Pods in a Namespace

Description:

In this exercise, you define limits for containers and pods in the Kubernetes

cluster and test those limits.

Task 1: Create a New Namespace in the Cluster

1. On the management workstation, at the command line, enter the following
command to create a new namespace in the Kubernetes cluster:

kubectl create namespace limit-example

You should see that a new namespace was created.
2. Enter the following command to display the namespaces:

kubectl get namespaces

You should see the new namespace listed.

Task 2: Examine the Manifest that Defines the Limits

1. Enter the following commands to change to the directory containing the limits
manifests and display the contents of the default-limits.yaml file:

cd ~/course_files/KUB201/labs/manifests/limits

cat default-limits.yaml

You should see the following:

apiVersion: v1
kind: LimitRange
metadata:
 name: cpu-and-memory-limits
spec:
 limits:

101

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 - default:
 cpu: "1"
 memory: 200Mi
 defaultRequest:
 cpu: 500m
 memory: 100Mi
 max:
 cpu: "2"
 memory: 1Gi
 min:
 cpu: 200m
 memory: 3Mi
 type: Container

Notice that there is no resources section specifying limits or requests.

Task 3: Apply the Limits to the Namespace

1. To deploy the pod, open a terminal and enter the following commands:

cd ~/course_files/KUB201/labs/manifests/limits/

kubectl -n limit-example apply -f default-limits.yaml

You should see the limitrange cpu-and-memory-limits was created.
2. Enter the following command to display the limitranges:

kubectl -n limit-example describe limitranges

You should see the cpu-and-memory-limits limitrange listed. Compare this
with the limits set in the manifest file in Task 2.

3. Another way to review the limits of a namespace is to describe the
namespace:

kubectl describe namespace limit-example

Summary:

In this exercise, you created a new namespace in the Kubernetes cluster. You

then defined default limits for pods and applied them to the new namespace.

102

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

(End of Exercise)

103

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

8- 2 Define Limits for Containers and Pods

Description:

In this exercise, you test pod resource limits and requests in a namespace.

Dependencies:

The “Define Default Limits for Pods in a Namespace” exercise must be

completed before performing this exercise.

Task 1: Deploy a Pod with No Limits or Requests

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the limits manifests and
display the contents of the cpu-defaults-pod.yaml file:

cd ~/course_files/KUB201/labs/manifests/limits

cat cpu-defaults-pod.yaml

You should see the following:

apiVersion: v1
kind: Pod
metadata:
 name: cpu-defaults-pod
spec:
 containers:
 - name: cpu-defaults-pod
 image: nginx

Notice that there is no resources section specifying limits or requests.
2. Enter the following command to attempt to deploy the pod:

kubectl -n limit-example apply -f cpu-defaults-pod.yaml

You should see the pod was deployed.

104

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3. Enter the following command to display the pod’s specification:

kubectl -n limit-example get pod cpu-defaults-pod --output=yaml

You should see a resource section with the default limits and requests that are
set for the namespace (limits.cpu: 1 and requests.cpu: 500m).

Task 2: Deploy a Pod with Only a Limit

1. Enter the following command to display the contents of the cpu-limit-only-
pod.yaml file:

cat cpu-limit-only-pod.yaml

You should see the following:

apiVersion: v1
kind: Pod
metadata:
 name: cpu-limit-only-pod
spec:
 containers:
 - name: cpu-limit-only-pod
 image: nginx
 resources:
 limits:
 cpu: "1"

Notice that in the resources section only a cpu limit is specified.
2. Enter the following command to attempt to deploy the pod:

kubectl -n limit-example apply -f cpu-limit-only-pod.yaml

You should see the pod was deployed.
3. Enter the following command to display the pod’s specification:

kubectl -n limit-example get pod \
 cpu-limit-only-pod --output=yaml

You should see a resource section with the cpu requests set to the same value
as the limit (limits.cpu: 1 and requests.cpu: 1).

105

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 3: Deploy a Pod with Only a Request

1. Enter the following command to display the contents of the cpu-request-
only-pod.yaml file:

cat cpu-request-only-pod.yaml

You should see the following:

apiVersion: v1
kind: Pod
metadata:
 name: cpu-request-only-pod
spec:
 containers:
 - name: cpu-request-only-pod
 image: nginx
 resources:
 requests:
 cpu: "0.75"

Notice that in the resources section only a cpu request is specified.
2. Enter the following command to attempt to deploy the pod:

kubectl -n limit-example apply -f cpu-request-only-pod.yaml

You should see the pod was deployed.
3. Enter the following command to display the pod’s specification:

kubectl -n limit-example get pod cpu-request-only-pod \
 --output=yaml

You should see a resource section with the cpu requests set to value specified
in the pod’s manifest and the limit is set to the namespace default
(limits.cpu: 1 and requests.cpu: 750m).

Task 4: Deploy a Pod Requesting Too Much CPU

1. Enter the following command display the contents of the too-much-cpu-
pod.yaml file:

cat too-much-cpu-pod.yaml

You should see the following:

apiVersion: v1

106

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kind: Pod
metadata:
 name: too-much-cpu-pod
spec:
 containers:
 - name: too-much-cpu-pod
 image: nginx
 resources:
 limits:
 cpu: "3"
 memory: 100Mi

Notice that in the resources section the cpu limit is set to 3 (which is more than
the maximum limit set in the LimitRange set on the namespace).

2. Enter the following command to attempt to deploy the pod:

kubectl -n limit-example apply -f too-much-cpu-pod.yaml

You should see the pod “too-much-cpu-pod” was not created because it
tried to exceed the maximum CPU limit of 2.

Error from server (Forbidden): error when creating "too-much-cpu-
pid.yaml": pods "too-much-cpu-pod" is forbidden: [maximum cpu
usage per Container is 2, but limit is 3]

Task 5: Deploy a Pod Requesting Too Little CPU

1. Enter the following command display the contents of the too-little-cpu-
pod.yaml file:

cat too-little-cpu-pod.yaml

You should see the following:
Notice that in the resources section the cpu limit is set to 100m (which is less
than the minimum limit set in the LimitRange set on the namespace).

2. Enter the following command to attempt to deploy the pod:

kubectl -n limit-example apply -f too-little-cpu-pod.yaml

You should see the pod “too-little-cpu-pod” was not created because it tried
to exceed the minimum CPU limit of 200m.

Error from server (Forbidden): error when creating "too-little-
cpu-pid.yaml": pods "too-litle-cpu-pod" is forbidden: [minimum
cpu usage per Container is 200m, but limit is 100m]

107

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 6: Delete the Namespace and Objects from the Cluster

1. Enter the following command to delete a namespace from the Kubernetes
cluster:

kubectl delete namespace limit-example

You should see that the namespace was deleted.
2. Enter the following command to display the namespaces:

kubectl get namespaces

You should no longer see the namespace listed.

Summary:

In this exercise, you tested pod resource limits and requests in a namespace

and then deleted the namespace.

(End of Exercise)

108

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

8- 3 Define Quotas for a Namespace

Description:

In this exercise you create a new namespace and then create quotas for that

namespace.

Task 1: Create a New Namespace in the Cluster

1. Enter the following command to create a new namespace:

kubectl create namespace quota-example

The namespace should have been created.
2. Enter the following command to display the quota usage for the new

namespace:

kubectl -n quota-example describe quota

No quotas should be displayed as none have been defined for the
namespace yet.

Task 2: Examine the Manifests that Define the Quotas

1. On the management workstation, in a terminal, enter the following
commands to change to the directory containing the quota manifests and
display the contents of the quota-high.yaml file

cd ~/course_files/KUB201/labs/manifests/quotas

cat quota-high.yaml

You should see the following:

apiVersion: v1
kind: ResourceQuota
metadata:

109

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 name: pods-high
spec:
 hard:
 cpu: “10”
 memory: 20Gi
 pods: 10

Note the quotas for cpu, memory and pods.
2. Enter the following command to display the contents of the quota-low.yaml

file:

cat quota-low.yaml

You should see the following:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: pods-low
spec:
 hard:
 cpu: “3”
 memory: 3Gi
 pods: 5

Note the quotas for cpu, memory and pods. Compare them to the values for
the quotas-high.yaml file.

Task 3: Set Quotas for a Namespace

1. Enter the following command to create the higher set of quotas on the
namespace:

kubectl -n quota-example create -f quota-high.yaml

The quotas should have been created.
2. Enter the following command to display the quota usage for the new

namespace:

kubectl -n quota-example describe quota

Notice that the quotas match those in the quota-high.yaml file.

110

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Summary:

In this exercise you first created a new namespace and then verified that

there are no quotas set in the namespcae. You then created quotas in the

namespace and verified they were created.

(End of Exercise)

111

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

8- 4 Test Quotas for a Namespace

Description:

In this exercise you deploy an application in a namespace that has quotas

set. You then scale the application out and back to see the effects the quotas

have.

Dependencies:

The “Define Quotas for a Namespace” exercise must be completed before

performing this exercise.

Task 1: Deploy a Pod in a Namespace that Contains Quotas

1. On the management workstation, in a terminal, enter the following commands
to change to the directory containing the quota manifests and display the
contents of the opensuse-deployment.yaml file:

cd ~/course_files/KUB201/labs/manifests/quotas

cat opensuse-deployment.yaml

You should see the following:

apiVersion: apps/v1
kind: Deployment metadata:
 name: opensuse-depoyment
 labels:
 env: "app"
 owner: opensuse
spec:
 selector:
 matchLabels:
 app: opensuse
 replicas: 1
 template:

112

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 metadata:
 labels:
 app: opensuse
 spec:
 containers:
 - name: opensuse
 image: opensuse/leap
 command: ["/bin/sh"]
 args: ["-c","while true; do echo hello; sleep 10; done"]
 resources"
 requests:
 cpu: "1.5"
 memory: "1Gi"
 limits:
 cpu: "2"
 memory: "1Gi"

Note the resource requests and limits.
2. Enter the following command to deploy the pod:

kubectl -n quota-example apply -f opensuse-deployment.yaml

The pod should be deployed.
3. Enter the following commands to verify that pod was deployed:

kubectl -n quota-example get deployments

kubectl -n quota-example get pods

You should see that there is a deployment with a single replica and a single
opensuse pod.

Task 2: Check Quota Usage in a Namespace

1. Enter the following command to display the quota usage in the namespace:

kubectl -n quota-example describe quota

You should see something like the following:

Name: pods-high
Namespace: quota-example
Resource Used Hard
-------- ---- ----
cpu 1500m 10
memory 1Gi 20Gi

113

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

pods 1 10

Notice the quotas that are set. Also notice the values in the Used column for
each quota.

Task 3: Scale Out a Deployment

1. Enter the following command to scale the deployment out:

kubectl -n quota-example \
 scale deployment opensuse-deployment \
 --replicas=5

The deployment should have been scaled.
2. Enter the following command to display info about the deployment:

kubectl -n quota-example get deployment

You should see that there are 5 replicas running.
3. Enter the following command to display the running pods:

kubectl -n quota-example get pods

You should see that there are indeed 5 pods running that correspond to the 5
replicas in the deployment.

4. Enter the following command to display the quota usage in the namespace:

kubectl -n quota-example describe quota

You should see something like the following:

Name: pods-high
Namespace: quota-example
Resource Used Hard
-------- ---- ----
cpu 7500m 10
memory 5Gi 20Gi
pods 5 10

Notice the values in the Used column for each quota have increased but are
below the hard quota.

5. Enter the following command to scale the deployment again:

kubectl -n quota-example \
 scale deployment opensuse-deployment \
 --replicas=10

114

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

The deployment should have been scaled.
6. Enter the following command to display info about the deployment:

kubectl -n quota-example get deployment

You should see that there are only 6 of the requested 10 replicas running.
7. Enter the following command to display the running pods:

kubectl -n quota-example get pods

You should see that there are indeed 6 pods running that correspond to the 6
of 10 replicas in the deployment.

8. Enter the following command to display the quota usage in the namespace:

kubectl -n quota-example describe quota

You should see something like the following:

Name: pods-high
Namespace: quota-example
Resource Used Hard
-------- ---- ----
cpu 9 10
memory 6Gi 20Gi
pods 6 10

Notice the values in the Used column for each quota have increased but are
below the hard quota.
Note that the deployment was not able to scale out to the requested 10
replicas because it would have exceeded the cpu quota set in the
namespace.

Task 4: Change Quotas for a Namespace

1. Enter the following commands to create the lower set of quotas on the
namespace:

kubectl -n quota-example delete -f quota-high.yaml

kubectl -n quota-example create -f quota-low.yaml

The old quotas should have been deleted and the new quotas should have
been created.

115

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

2. Enter the following command to display the quota usage for the new
namespace:

kubectl -n quota-example describe quota

You should see something like the following:

Name: pods-low
Namespace: quota-example
Resource Used Hard
-------- ---- ----
cpu 9 3
memory 6Gi 3Gi
pods 6 5

Notice that the quotas in the Hard column match those in the quota-
low.yaml file.
Also notice that the values in the Used column exceed the values in the Hard
column because the pods were already running before the quotas changed.

Task 5: Scale a Deployment Again

1. Enter the following command to scale the deployment back:

kubectl -n quota-example \
 scale deployment opensuse-deployment \
 --replicas=5

The deployment should have been scaled back.
2. Enter the following command to display info about the deployment:

kubectl -n quota-example get deployment

You should see that there are 5 of 5 replicas running.
3. Enter the following command to display the running pods:

kubectl -n quota-example get pods

You should see that there are indeed 5 pods running that correspond to the 5
replicas in the deployment.

4. Enter the following command to display the quota usage in the namespace:

kubectl -n quota-example describe quota

116

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

You should see something like the following:

Name: pods-low
Namespace: quota-example
Resource Used Hard
-------- ---- ----
cpu 9 3
memory 6Gi 3Gi
pods 6 5

Notice the values in the Used column for each quota have not changed even
thought the deployment has been scaled back.

5. Enter the following command to scale the deployment back even farther:

kubectl -n quota-example \
 scale deployment opensuse-deployment \
 --replicas=2

The deployment should have been scaled back.
6. Enter the following command to display info about the deployment:

kubectl -n quota-example get deployment

You should see that there are 2 replicas running.
7. Enter the following command to display the running pods:

kubectl -n quota-example get pods

You should see that there are indeed 2 pods running that correspond to the 2
replicas in the deployment.
(Depending on how quickly you run the command after the scale back there
may be some pods still in the Terminating state. Wait for these to finish
terminating before moving on to the next step.)

8. Enter the following command to display the quota usage in the namespace:

kubectl -n quota-example describe quota

You should see something like the following:

Name: pods-low
Namespace: quota-example
Resource Used Hard
-------- ---- ----
cpu 3 3
memory 2Gi 3Gi
pods 2 5

117

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Notice the values in the Used column for each quota have decreased and are
at or below the hard quota.

9. Enter the following command to attempt to scale the deployment out again:

kubectl -n quota-example \
 scale deployment opensuse-deployment \
 --replicas=3

The deployment should have been scaled back.
10. Enter the following command to display info about the deployment:

kubectl -n quota-example get deployment

You should see that there are only 2 of the 3 requested replicas running.
11. Enter the following command to display the running pods:

kubectl -n quota-example get pods

You should see that there are indeed 2 pods running that correspond to the 2
replicas in the deployment.

12. Enter the following command to display the quota usage in the namespace:

kubectl -n quota-example describe quota

You should see something like the following:

Name: pods-low
Namespace: quota-example
Resource Used Hard
-------- ---- ----
cpu 3 3
memory 2Gi 3Gi
pods 2 3

Notice the values in the Used column for each quota have decreased and are
at or below the hard quota.

Task 6: Delete Quotas for a Namespace

1. Enter the following command to create the lower set of quotas on the
namespace:

kubectl -n quota-example delete -f quota-low.yaml

The quotas should have been deleted.

118

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

2. Enter the following command to display the quota usage for the new
namespace:

kubectl -n quota-example describe quota

You should see that there are no longer quotas for the namespace.
3. Enter the following command to display info about the deployment:

kubectl -n quota-example get deployment

You should see that there are now 3 of the 3 requested replicas running.
(Depending on how quickly you ran this command after deleting the quotas
you may still see only 2 replicas running. Wait a minute and rerun the
command and you should see the additional replica.)

Task 7: Delete the Namespace

1. Enter the following command to delete the namespace:

kubectl delete namespace quota-example

The namespace and all quotas/deployments/posts in it should should have
been deleted.

2. Enter the following command to verify that namespace was deleted:

kubectl get namespace

You should no longer see the namespace listed.

Summary:

In this exercise you deployed an application in a namespace that has quotas

set. You then scaled out the application, first to a number that would adhere

to the quotas and then to one that would exceed the quotas and observed

the behavior. You then changed the quotas and observed what happened to

the application as you tried to scale it back and then out again. You then

deleted the quotas and observed what happened to the scaled out

application. Finally you deleted the namespace.

119

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

(End of Exercise)

120

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

9 Role Based Access Controls Security in Kubernetes

Description:

This section covers Role Based Access Control (RBAC) in Kubernetes.

121

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

9- 1 Create Service Accounts

Description:

In this exercise you create service accounts for some additional Kubernetes

users.

Task 1: Create a New Namespace

1. On the management workstation, in a terminal, enter the following command
to create a new namespace for the users:

kubectl create namespace walnuts

The namespace should have been created.

Task 2: Create Service Account Manifests

1. On the management workstation, in the text editor of your choice, create/open
the file ~/charlie-sa.yaml to be edited

2. Enter the following in the file:

kind: ServiceAccount
apiVersion: v1
metadata:
 namespace: walnuts
 name: charlie

3. Save the file
4. Repeat the previous steps to create manifests for the following users:

lucy
linus

Name the manifest files USERNAME-sa.yaml (where USERNAME is the user's
name) and modify the name: key to match the user's name.

122

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

Task 3: Create the Service Accounts in the Namespace

1. Enter the following commands to create the service accounts in Kubernetes:

kubectl apply -f ~/charlie-sa.yaml

kubectl applu -f ~/lucy-sa.yaml

kubectl apply -f ~/linus-sa.yaml

You should have three new service accounts created.
2. Enter the following command to display the service accounts in the

namespace:

kubectl get serviceaccounts -n walnuts

You should see the three new service accounts displayed.

Summary:

In this exercise you createD a new namespace. You then created manifests

for new service accounts and then added the service accounts to the cluster.

(End of Exercise)

123

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

9- 2 Create kubeconfig Files for Service Accounts

Description:

In this exercise you create kubeconfig files for service accounts.

Task 1: Create kubeconfig Files

1. On the management workstation, in a terminal, enter the following
commands to retrieve the cluster info for a kubeconfig file:

kubectl config view --flatten --minify | \
 grep 'certificate-authority-data:'

kubectl config view --flatten --minify | \
 grep 'server:'

kubectl config view --flatten --minify | \
 grep 'name:' | head -1

The output of the first command will be referred to as CA_DATA.
The output of the second command will be referred to as SERVER.
The output of the third command will be referred to as CLUSTER_NAME.

2. Enter the following command to retrieve the secret for the charlie
serviceaccount:

kubectl describe serviceaccounts -n walnuts charlie \
 | grep Tokens: \
 | awk '{ print $2 }'

We will refer to this as USER_SECRET.
3. Enter the following command to retrieve the authentication token for the

charlie user:

kubectl describe secrets -n walnuts USER_SECRET \
 | grep token: \

124

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 | awk '{ print $2 }'

We will refer to this as USER_TOKEN.
4. In the text editor of your choice, create/open the file ~/kubeconf-charlie to

be edited
5. Enter the following into the file (replacing the CA_DATA, SERVER, CLUSTER_NAME,

USER_TOKEN lab variables with the values retrieved above):

apiVersion: v1
kind: Config
clusters:
- cluster:
 certificate-authority-data: CA_DATA
 server: SERVER
 name: CLUSTER_NAME
contexts:
- context:
 cluster: CLUSTER_NAME
 user: charlie
 name: CLUSTER_NAME
current-context: CLUSTER_NAME
users:
- name: charlie
 user:
 token: USER_TOKEN

6. Save the file
7. Repeat steps 2-5 in this task for the following serviceaccounts (replacing

'charlie' with these serviceaccount names):

lucy
linus

Summary:

In this exercise you created the cluster and serviceaccount authentication

information and used that to create kubeconfig files for the serviceaccounts.

125

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

(End of Exercise)

126

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

9- 3 Create Roles and ClusterRoles

Description:

In this exercise you will create roles in a namespace and cluster roles all from

manifests via the command line. You will then confirm that they are available.

Dependencies:

The walnuts namespace should have been created before performing this

exercise.

Task 1: Create Roles with from Manifests

1. On the management workstation, in a terminal, enter the following
commands to review a role manifest:

cd ~/course_files/KUB201/labs/manifests/rbac/roles/

cat role-walnuts-pod-watcher.yaml

You should see the following text:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: walnuts
 name: walnuts-pod-watcher
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Pay attention to the resource specified in the resources: section and the
verbs in the verbs: section as these will indicate what resource and which
actions are allowed.
If desired, repeat the cat command for the remaining yaml files in this
directory paying attention to the resources and verbs in those files.

127

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

2. Enter the following command to create the roles defined by the files in this
directory:

kubectl apply -f ./

3. Enter the following command to display the roles created in the walnuts
namespace:

kubectl -n walnuts get roles

You should see roles that correspond with the roles defined in the yaml files.
4. Confirm that a role is now set:

kubectl -n walnuts describe role walnuts-pod-watcher

You should see the role and the permissions that it contains.
You can repeat this command for each of the other roles created if desired.

Task 2: Create Cluster Roles from Manifests

1. On the management workstation, in a terminal, enter the following
commands to review a cluster role manifest:

cd ~/course_files/KUB201/labs/manifests/rbac/clusterroles/

cat clusterrole-pod-watcher.yaml

You should see the following text:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: cluster-pod-watcher
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

As you can see, there is no namespace listed for a cluster role.
If desired, repeat the cat command for the remaining yaml files in this
directory paying attention to the resources and verbs in those files.

2. Enter the following command to create the cluster roles defined by the files in
this directory:

kubectl apply -f ./

128

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

3. Enter the following command to display the cluster roles created in the cluster:

kubectl get clusterroles

You should see cluster roles that correspond with the roles defined in the yaml
files.

4. Confirm that the cluster role is now set:

kubectl describe clusterrole cluster-pod-watcher

Summary:

In this exercise you created new roles and cluster roles for users that could be

in your cluster. You then confirmed that each was available and what

permissions they contain.

(End of Exercise)

129

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

9- 4 Create RoleBindings and ClusterRoleBindings

Description:

In this exercise you will create role bindings and a cluster role bindings that

bind users to a set of permissions contained in roles and cluster roles.

Dependencies:

The “Log Into a CaaS Platform Cluster” exercise must be completed before

performing this exercise.

Task 1: Create Role Bindings from Manifests

1. On the management workstation, in a terminal, enter the following
commands to review a role binding:

cd ~/course_files/KUB201/labs/manifests/rbac/rolebindings/

cat rolebinding-charlie-walnuts-deployment-manager.yaml

You should see the following text:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: charlie-walnuts-deployment-manager
 namespace: walnuts
subjects:
- kind: User
 name: charlie
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: walnuts-deployment-manager
 apiGroup: rbac.authorization.k8s.io

The subject is the user and the roleRef is the role that will be bound together in
the walnuts namespace.

130

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

If desired repeat the cat command for the remaining files in this directory
taking note of which users are being linked to which roles.

2. Enter the following command to create the role bindings from the file in this
directory:

kubectl apply -f ./

The roles should have been created.
3. Enter the following command to list the role bindings created in the

namespace:

kubectl -n walnuts get rolebindings

You should see the role bindings listed that correspond to the role bindings
listed in the yaml files.

4. Enter the following command to review a role binding:

kubectl -n walnuts describe rolebinding \
 charlie-walnuts-deployment-manager

The user charlie has been bound to the role walnuts-deployment-manager.
If desired, repeat this command for the other role bindings that were created.

Task 2: Create Cluster Role Bindings from Manifests

1. On the management workstation, in a terminal, enter the following
commands to review a cluster role binding:

cd ~/course_files/KUB201/labs/manifests/rbac/clusterrolebindings/

cat clusterrolebinding-linus-pod-watcher.yaml

You should see the following text:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: linus-cluster-pod-watcher
 namespace: walnuts
subjects:
- kind: User
 name: linus
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role

131

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

 name: cluster-pod-watcher
 apiGroup: rbac.authorization.k8s.io

The subject is the user and the roleRef is the role that will be bound together in
the walnuts namespace.
If desired repeat the cat command for the remaining files in this directory
taking note of which users are being linked to which cluster roles.

2. Enter the following command to deploy the cluster role binding:

kubectl apply -f ./

The cluster roles should have been created.
3. Enter the following command to list the cluster role bindings created in the

cluster:

kubectl get clusterrolebindings

You should see a bunch of existing cluster role bindings listed as well as the
cluster role bindings listed that correspond to the role binding in the yaml files.

4. Enter the following command to review a cluster role binding:

kubectl describe clusterrolebinding linus-cluster-pod-watcher

You should see the user bound to the cluster role.

Summary:

In this exercise you bound users with their respective roles using role bindings
and cluster role bindings and confirmed that they are active.

(End of Exercise)

132

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

9- 5 Test RBAC in Kubernetes

Description:

In this exercise you test RBAC roles and cluster roles that were configured in a

previous exercise.

Dependencies:

The exercises titles "create Service Accounts", "Create kubeconfig Files for

Service Accounts", "Create Roles and ClusterRoles" and "Create RoleBindings

and ClusterRoleBindings" must be completed before performing this exercise.

Task 1: Test the RBAC Roles for the Charlie ServiceAccount

1. On the management workstation, in a terminal, enter the following command
to test the charlie serviceaccount's ability to view and manage deployments:

kubectl --kubeconfig=/home/tux/kubeconf-charlie \
 -n walnuts get deployments

You should see "No resources found in walnuts namespace" displayed.
This shows that the RBAC role assigned to the charlie serviceaccount allowed
it to successfully get the deployments in the namespace. No deployments
have been created in the namespace yet so the output of the command is
correct.

2. Enter the following commands to create a deployment in the namespace:

cd ~/course_files/KUB201/labs/manifests/nginx/

kubectl --kubeconfig=/home/tux/kubeconf-charlie \
 -n walnuts apply -f nginx-deployment.yaml

The deployment should be created.
3. Try to get the deployments again:

133

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

kubectl --kubeconfig=/home/tux/kubeconf-charlie \
 -n walnuts get deployments

You should see the state of the nginx-deployment displayed.
4. Enter the following command to display the pods created by the deployment:

kubectl --kubeconfig=/home/tux/kubeconf-charlie \
 -n walnuts get pods

You should see an error stating that the serviceaccount charlie cannot list the
pods for the namespace. This is because the charlie serviceaccount was only
assigned role relative to deployment resources but not pod resources in the
namespace.

5. Enter the following command to display roles for the namespace:

kubectl -n walnuts get rolebindings

You should see a role binding named charlie-walnuts-deployment-
manager listed.

6. Enter the following command to display information about the role binding:

kubectl -n walnuts \
 describe rolebinding charlie-walnuts-deployment-manager

You should see that the charlie serviceaccount is assigned a role named
walnuts-deployment-manager.

7. Enter the following command to display information about the role:

kubectl -n walnuts describe role walnuts-deployment-manager

You should see that the resources (deployments) and the verbs (get list
watch create update patch delete) match up with the permission the charlie
serviceaccount was able to do in the namespace.

Task 2: Test the RBAC Rules for the Linus ServiceAccount

1. Enter the following command to test the linus serviceaccount's ability to view
and manage deployments:

kubectl --kubeconfig=/home/tux/kubeconf-linus \
 -n walnuts get deployments

You should see an error stating that the serviceaccount linus cannot list the

134

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

pods for the namespace.
2. Enter the following command to display the pods created by the deployment

in the namespace:

kubectl --kubeconfig=/home/tux/kubeconf-linus \
 -n walnuts get pods

You should see the pods for the deployment displayed. This is because the
linus serviceaccount was assigned a role that only allows listing of pods but
not deployments in the namespace.
Note the name of the first pod listed in the deployment. We will refer to this as:
NGINX_POD

3. Enter the following command to attempt to delete a pod created by the
deployment:

kubectl --kubeconfig=/home/tux/kubeconf-linus \
 -n walnuts delete pod NGINX_POD

You should see an error stating the linus serviceaccount does not have the
permissions to delete a pod. This is because the role assigned to the linus
serviceaccount only allows listing of pods.

4. Enter the following command to display the pods created by the deployment
in the entire cluster:

kubectl --kubeconfig=/home/tux/kubeconf-linus \
 get pods --all-namespaces

You should see the pods in all namespaces displayed. This is because the linus
serviceaccount was assigned a cluster role that only allows listing of pods
which applies to all namespaces.

5. Enter the following command to display roles for the namespace:

kubectl -n walnuts get rolebindings

You should see a role binding named linus-walnuts-pod-watcher listed.
6. Enter the following command to display information about the role binding:

kubectl -n walnuts \
 describe rolebinding linus-walnuts-pod-watcher

You should see that the charlie serviceaccount is assigned a role named
walnuts-pod-watcher.

135

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

7. Enter the following command to display information about the role:

kubectl -n walnuts describe role walnuts-pod-watcher

You should see that the resources (pods) and the verbs (get list watch)
match up with the permission the linus serviceaccount was able to do in the
namespace.

8. Enter the following command to display cluster roles for the namespace:

kubectl get clusterrolebindings

You should see a cluster role binding named linus-cluster-pod-watcher
listed.

9. Enter the following command to display information about the role binding:

kubectl describe clusterrolebinding linus-cluster-pod-watcher

You should see that the charlie serviceaccount is assigned a role named
cluster-pod-watcher.

10. Enter the following command to display information abut the role:

kubectl describe clusterrole cluster-pod-watcher

You should see that the resources (pods) and the verbs (get list watch)
match up with the permission the linus serviceaccount was able to do in all
namespaces.

Task 3: Test the RBAC Rules for the Lucy ServiceAccount

1. Using the commands used in the previous tasks, explore what actions the lucy
serviceaccount is able to perform (using the lucy serviceaccount's kubeconfig
file: ~/kubeconf-lucy)
What is lucy able to do relative to pods in the namespace?
What is lucy able to do relative to deployments in the namespace?
What is lucy able to do relative to other resources in the namespace?
What roles and cluster role bindings enable lucy to perform these actions?

Summary:

136

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

In this exercise you tested the RBAC roles and cluster roles for the charlie and

linus servicaccounts. You verified that the permissions in the roles and cluster

roles assigned to the serviceaccounts matched up with the actions they were

actually able to perform. You then explored in a free form fashion what

actions the lucy serviceaccount is able to perform.

(End of Exercise)

137

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Kubernetes Administration

138

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Thank you
For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

+49 (0)911-740 53-0 (Worldwide)

Maxfeldstrasse 5

90409 Nuremberg

www.suse.com

© 2021 SUSE LLC. All Rights Reserved. SUSE and
the SUSE logo are registered trademarks of
SUSE LLC in the United States and other
countries. All third-party trademarks are the
property of their respective owners.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

	Documentation Conventions:
	1 Course Introduction
	Lab Environment Diagrams
	Lab Environment Information
	Lab Environment Requirements
	1 Start the Lab Environment VMs
	Task 1: Start the Lab Environment VMs
	Task 2: Log Into the Management Workstation VM

	2 Introduction to Containers and Container Orchestration
	(No Exercises)

	3 Kubernetes Administration
	1 Use Basic kubectl Commands
	Task 1: List Commands
	Task 2: Describe Commands
	Task 3: Creation and Deletion Commands
	Task 4: Troubleshooting Commands

	2 Work with Namespaces in Kubernetes
	Task 1: List Namespaces
	Task 2: Create a Namespace
	Task 3: Delete a Namespace

	3 Deploy a Simple Pod Using a Deployment
	Task 1: Examine a Manifest for the Deployment
	Task 2: Deploy the Pod

	4 Delete and Redeploy a Deployment
	Task 1: Delete the Deployment
	Task 2: Redeploy the Deployment

	5 Update Pods in a Deployment
	Task 1: Create a New Manifest for the Deployment
	Task 2: Update the Deployment

	6 Create and Edit a Service for an Application
	Task 1: Examine a Manifest for the Service
	Task 2: Define the Service
	Task 3: Access the Exposed Service
	Task 4: Edit the Service
	Task 5: Review Service
	Task 6: Delete the Service

	7 Use Environment Variables in a Pod
	Task 1: Examine the Manifest for the Pod
	Task 2: Deploy the Pod
	Task 3: Display the Environment Variable in the Container
	Task 4: Delete the Pod

	8 Use ConfigMaps with a Pod
	Task 1: Display the Manifests for the ConfigMap and Pod
	Task 2: Deploy the configMap and Pod
	Task 3: Display the Environment Variables in the Container
	Task 4: Delete the Pod

	9 Define and Access Secrets as Volumes
	Task 1: Define the Secret
	Task 2: Deploy a Pod that Uses the Secret
	Task 3: Access the Secret in the Pod
	Task 4: Delete the Pod and the Secret

	10 Define and Access Secrets as Environment Variables
	Task 1: Define the Secret
	Task 2: Deploy a Pod that Uses the Secret
	Task 3: Access the Secret in the Pod
	Task 4: Delete the Pod

	11 Work with Labels and Selectors
	Task 1: Deploy Pods
	Task 2: Select Pods by Band
	Task 3: Create a Label
	Task 4: Delete Pods by Label

	12 Work with Node Selectors
	Task 1: Attach Labels to Nodes
	Task 2: Deploy Pods
	Task 2: Select Pods by Band
	Task 4: Delete Pods by Label

	13 Work with Taints and Tolerations
	Task 1: Add Taints to Nodes
	Task 2: Deploy Pods
	Task 3: Select Pods by Band
	Task 4: Delete Pods by Label
	Task 5: Remove Taints from Nodes

	14 Scale a Deployment
	Task 1: Examine a New Manifest for the Deployment
	Task 2: Scale the Deployment
	Task 3: Manually Scale the Deployment Out

	15 Configure Horizontal Pod Autoscaling
	Task 1: Deploy the AutoScaler Manifests
	Task 2: Cause the Deployment To Scale Out
	Task 3: Cause the Deployment To Scale Back
	Task 4: Clean Up the Deployments

	4 Application Management on Kubernetes with Kustomize
	1 Manage Applications with Kustomize
	Task 1: Examine the Base Manifests
	Task 2: Deploy the Base Application
	Task 3: Examine the Overlay Manifests
	Task 4: Deploy the Prod, Stage and Dev Applications
	Task 5: Delete the Base, Prod, Stage and Dev Applications
	Task 6: (OPTIONAL) Experiment with Modifying the Different Applications

	5 Application Management on Kubernetes with Helm
	1 Add a Repository to Helm
	Task 1: Add the Bitnami Repository

	2 Deploy an Application with Helm
	Task 1: Create Helm Chart Config File
	Task 2: Deploy the Helm Chart
	Task 3: Access the Application Deployed by the Helm Chart
	Task 4: Delete a Deployed Helm Chart Release

	6 Ingress Networking with an Ingress Controller in Kubernetes
	1 Configure Ingress for an Application
	Task 1: Deploy Websites
	Task 2: Deploy the Ingress Rules
	Task 3: Test the Ingress

	7 Storage in Kubernetes
	1 Configure Persistent Storage with NFS
	Task 1: Create the Persistent Volume on the NFS Server
	Task 2: Examine the Manifests for the Persistent Volumes
	Task 3: Examine the Manifest for the Persistent Volume Claim
	Task 4: Examine the Manifest for the Busybox Instance
	Task 5: Examine the Manifest for the Webserver Instance
	Task 6: Examine the Manifest for the Web Service
	Task 7: Deploy the Objects
	Task 8: Test the Persistent Data
	Task 9: Remove the Objects from the Cluster

	2 Configure Persistent Storage with an NFS StorageClass
	Task 1: Deploy the NFS storageClass
	Task 2: Examine the Manifest for the Persistent Volume
	Task 3: Examine the Manifest for the Busybox Instance
	Task 4: Examine the Manifest for the Webserver Instance
	Task 5: Examine the Manifest for the Web Service
	Task 6: Deploy the Objects
	Task 7: Examine the Persistent Storage
	Task 8: Test the Persistent Data
	Task 9: Remove the Objects from the Cluster
	Task 10: Reexamine the Persistent Storage

	8 Resource Usage Control in Kubernetes
	1 Define Default Limits for Pods in a Namespace
	Task 1: Create a New Namespace in the Cluster
	Task 2: Examine the Manifest that Defines the Limits
	Task 3: Apply the Limits to the Namespace

	2 Define Limits for Containers and Pods
	Task 1: Deploy a Pod with No Limits or Requests
	Task 2: Deploy a Pod with Only a Limit
	Task 3: Deploy a Pod with Only a Request
	Task 4: Deploy a Pod Requesting Too Much CPU
	Task 5: Deploy a Pod Requesting Too Little CPU
	Task 6: Delete the Namespace and Objects from the Cluster

	3 Define Quotas for a Namespace
	Task 1: Create a New Namespace in the Cluster
	Task 2: Examine the Manifests that Define the Quotas
	Task 3: Set Quotas for a Namespace

	4 Test Quotas for a Namespace
	Task 1: Deploy a Pod in a Namespace that Contains Quotas
	Task 2: Check Quota Usage in a Namespace
	Task 3: Scale Out a Deployment
	Task 4: Change Quotas for a Namespace
	Task 5: Scale a Deployment Again
	Task 6: Delete Quotas for a Namespace
	Task 7: Delete the Namespace

	9 Role Based Access Controls Security in Kubernetes
	1 Create Service Accounts
	Task 1: Create a New Namespace
	Task 2: Create Service Account Manifests
	Task 3: Create the Service Accounts in the Namespace

	2 Create kubeconfig Files for Service Accounts
	Task 1: Create kubeconfig Files

	3 Create Roles and ClusterRoles
	Task 1: Create Roles with from Manifests
	Task 2: Create Cluster Roles from Manifests

	4 Create RoleBindings and ClusterRoleBindings
	Task 1: Create Role Bindings from Manifests
	Task 2: Create Cluster Role Bindings from Manifests

	5 Test RBAC in Kubernetes
	Task 1: Test the RBAC Roles for the Charlie ServiceAccount
	Task 2: Test the RBAC Rules for the Linus ServiceAccount
	Task 3: Test the RBAC Rules for the Lucy ServiceAccount

