
Kubernetes Administration
-Lecture-

Course ID: KUB201v1.2
Version: 1.2.0

Date: 2021-04-20

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

 Proprietary Statement
Copyright © 2021 SUSE LLC. All rights reserved.

SUSE LLC, has intellectual property rights relating to
technology embodied in the product that is
described in this document.

No part of this publication may be reproduced,
photocopied, stored on a retrieval system, or
transmitted without the express written consent of
the publisher.

SUSE
Maxfeldstrasse 5
90409 Nuremberg
Germany
www.suse.com

(C) 2021 SUSE LLC. All Rights Reserved. SUSE and the
SUSE logo are registered trademarks of SUSE LLC in
the United States and other countries. All third-
party trademarks are the property of their
respective owners.

Disclaimer
SUSE LLC, makes no representations or warranties
with respect to the contents or use of this
documentation, and specifically disclaims any
express or implied warranties of merchantability or
fitness for any particular purpose.

Further, SUSE LLC, reserves the right to revise this
publication and to make changes to its content, at
any time, without obligation to notify any person or
entity of such revisions or changes. Further, SUSE
LLC, makes no representations or warranties with
respect to any software, and specifically disclaims
any express or implied warranties of
merchantability or fitness for any particular
purpose. Further, SUSE LLC, reserves the right to
make changes to any and all parts of SUSE
software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided
under this Agreement may be subject to U.S.
export controls and the trade laws of other
countries. You agree to comply with all export
control regulations and to obtain any required
licenses or classification to export, re-export or
import deliverables. You agree not to export or re-
export to entities on the current U.S. export
exclusion lists or to any embargoed or terrorist
countries as specified in the U.S. export laws. You
agree to not use deliverables for prohibited
nuclear, missile, or chemical biological weaponry
end uses. SUSE assumes no responsibility for your
failure to obtain any necessary export approvals.

This SUSE Training Manual is published solely to
instruct students in the use of SUSE networking
software. Although third-party application
software packages may be used in SUSE training
courses, this is for demonstration purposes only
and shall not constitute an endorsement of any of
these software applications.

Further, SUSE LLC does not represent itself as
having any particular expertise in these
application software packages and any use by
students of the same shall be done at the
student’s own risk.

Front Mat ter

Proprietary Statement
Copyright © 2021 SUSE LLC. All rights reserved.

SUSE LLC, has intel lectual property rights relat ing to technology
embodied in the product that is described in this document.

No part of this publication may be reproduced, photocopied, stored
on a retrieval system, or transmitted without the express written
consent of the publisher.

SUSE
Maxfeldstrasse 5
90409 Nuremberg
Germany
www.suse.com

(C) 2021 SUSE LLC. All Rights Reserved. SUSE and the SUSE logo are
registered trademarks of SUSE LLC in the United States and other
count ries. All third-party trademarks are the property of their
res pective owners.

Disclaimer
SUSE LLC, makes no representations or warrant ies with respect to the
contents or use of this documentation, and s pecifically disclaims any
express or impl ied warranties of merchantabi lity or fi tness for any
particular purpose.

Further , SUSE LLC, reserves the right to rev ise this publication and to
make changes to i ts content, at any time, without obligation to not ify
any person or entity of such rev isions or changes. Further, SUSE LLC,
makes no representations or warranties with respect to any
software, and specifically disclaims any express or impl ied
warranties of merchantabili ty or fitness for any part icular purpose.
Further , SUSE LLC, reserves the right to make changes to any and all
parts of SUSE software, at any time, without any obligation t o noti fy
any person or entity of such changes.

Any products or technical information provided under this
Agreement may be subject to U.S. export controls and the trade laws
of other countries. You agree to comply with al l export control
regulations and to obtain any required licenses or classification to
expor t, re-export or import deliverables. You agree not to export or
re-export to entities on the current U.S. export exclusion lists or to any
embargoed or terrorist countries as specified in the U.S. export laws.
You agree t o not use deliverables for prohibited nuclear, missile, or
chemical biological weaponry end uses. SUSE ass umes no
responsibility for your fai lure to obtain any necessary export
approvals.

T his SUSE Training Manual is published s olely to ins truct students in
the use of SUSE networking software. Although third-party application
software packages may be used in SUSE training courses, this is for
demonstration purposes only and shall not constitute an
endorsement of any of these software appl ications.

Further , SUSE LLC does not represent itself as having any particular
expert ise in these application software packages and any use by
st udents of the same shal l be done at the s tudent ’s own risk.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

Contents

SECTION 1: Course Introduction 4

SECTION 2: Introduction to Containers and Container Orchestration 19

SECTION 3: Kubernetes Administration 59

SECTION 4: Application Management on Kubernetes with Kustomize 166

SECTION 5: Application Management on Kubernetes with Helm 180

SECTION 6: Ingress Networking with an Ingress Controller in Kubernetes 207

SECTION 7: Storage in Kubernetes 218

SECTION 8: Resource Usage Control in Kubernetes 234

SECTION 9: Role Based Access Controls in Kubernetes 253

Table of Contents

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

4

Section: 1
Course Introduction

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

5

Copyright © SUSE 2021

Section Objectives:

1 Course Objectives and Audience

2 Course Lab Environment Overview

3 Certification Options

4 Additional SUSE Training

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

6

Copyright © SUSE 2021

Course Objectives and Audience

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

7

Copyright © SUSE 2021

Course Overview

● This course is designed for system administrators, DevOps, system
engineers and others who need an introduction to Containers,
Kubernetes

● The course begins with an introduction to containers and container
orchestration

● Students will learn about and explore Kubernetes, including
launching applications, configuring networking, storage and security,
and using Helm to deploy applications

● The course includes comprehensive presentation content to
introduce new concepts and processes and extensive hands-on
experience

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

8

Copyright © SUSE 2021

Audience

● This course is designed for system
administrators and others who
want to administer Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

9

Copyright © SUSE 2021

Course Agenda

● Day 1
– Section 1: Course Introduction
– Section 2: Introduction to Containers and Container Orchestration
– Section 3: Kubernetes Administration

● Day 2
– Section 4: Application Management in Kubernetes with Kustomize
– Section 5: Application Management in Kubernetes with Helm
– Section 6: Ingress Networking with an Ingress Controller in Kubernetes
– Section 7: Storage in Kubernetes
– Section 8: Resource Usage Control in Kubernetes
– Section 9: Role Based Access Controls in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

10

Copyright © SUSE 2021

Course Lab Environment

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

11

Copyright © SUSE 2021

Lab Environment Diagram

management control01 control02 control03

LAN: 172.30.201.0/24

worker02 worker03

Kubernetes Cluster

worker01

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

12

Copyright © SUSE 2021

Required Minimum Product Version

This course is based on the following
product version

Product: RKE, K3S and other
Kubernetes distros

Version: Kubernetes 1.19, RKE 1.2.5 or
comparable
(should work on recent older versions of Kubernetes as well)

This is the minimum version required to run the course.
The material in the course may apply to subsequent versions as well.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

13

Copyright © SUSE 2021

Hardware / Software Requirements

CPU: 4 Core

RAM: 50GB for VMs

Disk: 200GB

Min host OS: openSUSE Leap 15.2, SLES
15 SP2

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

14

Copyright © SUSE 2021

Certification Options

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

15

Copyright © SUSE 2021

Associated SUSE Certifications

● There are currently no SUSE
Kubernetes Certifications

● For more information:
https://training.suse.com/certification

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

16

Copyright © SUSE 2021

Additional SUSE Training

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

17

Copyright © SUSE 2021

Additional SUSE Training

● SUSE Training is available for:
– SUSE Linux Enterprise
– SUSE Linux Enterprise for SAP
– SUSE Manager
– SUSE Rancher

● See website for more:
https://training.suse.com/training

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

18

Copyright © SUSE 2021

Exercises:
1-1: Start the Lab Environment VMs

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

19

Section: 2
Introduction to Containers and Container
Orchestration

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

20

Copyright © SUSE 2021

Section Objectives:

1 Understand Container Concepts

2 Understand Microservice Architecture

3 Understand Kubernetes Concepts

4 Understand SUSE Rancher Kubernetes Offerings

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

21

Copyright © SUSE 2021

Understand Container Concepts

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

22

Copyright © SUSE 2021

Overhead vs Isolation

Virtual
Machines

Containers
(System/Application)

chroot

More
Overhead

Less
Overhead

More
Isolation

Less
Isolation

Virtual machine and containers are similar in many ways but their advantages and disadvantages are
different. One of the main goals of virtualization and containers is isolation of workloads from both other
workloads and the underlying system. How this isolation is implemented is one of the biggest differences
between them.

The most simple way to gain some level of isolation is to run an application in a chroot (change root)
environment. A chroot environment allows an application to have filesystem isolation in that the application
running in the chroot environment can only see the filesystem directory structure inside the chroot
environment. This chroot environment can be as simple as an existing directory in the host system’s
filesystem or it can be an image of some type that has been mounted into the host system’s filesystem. All
chroot environments running a host system share the host system’s kernel, they only have separate/isolated
views of the filesystem. A chroot requires the least overhead but also provide the least isolation.

Containers build upon the concept of chroot environments in that they maintain the filesystem isolation but
add process and network isolation. With containers, the filesystems are typically contained in images of
some sort. The process and network isolation are provided by kernel cgroups and namespaces. Containers
typically come in two flavors: system containers and applications containers. The line between the two
flavors can be a bit blurry at times but a simple description is that a system container contains a full OS
image minus the kernel where an application container only contains the files/libraries/binaries required to
run the desired application. All containers running on a host system share the host system’s kernel but have
their own filesystem, process space and network stack. Containers require a similar level of overhead to
chroot environments but provide a higher level of isolation.

Virtual machines require a special software component to run byond the requirements for chroot
environments and containers. This software component is called a hypervisor and it provides virtual
hardware level isolation. This hardware isolation presents a virtualized hardware interface to the virtual
machine that makes it think it is running on a separate machine. This provide the highest level of isolation but
also requires the highest level of overhead.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

23

In almost all cases a virtual machine uses a disk image as its filesystem. Because the virtual machine thinks it
is running on its own hardware it requires its own kernel to be running in addition to all other files libraries and
binaries. This means that operating systems that are different from the host OS can be run in a virtual
machine.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

24

Copyright © SUSE 2021

VM / chroot / Container Charateristics

Virtual
Machines

Containers
(System/Application) chroot

Isolation • Full hardware isolation provided by
Hypervisor and hardware emulation/
abstraction

Portability

Contains

• Completely portable*

• Full Operating System including own
kernel

• Can be different OS than the host OS

• Filesystem isolation
• Process isolation
• Network isolation

(cgroups/namespaces)

• Completely portable*

• Full Operating System minus own
kernel

or
• Only the libraries/apps required

• Filesystem isolation

• Not portable*

• Whatever is desired

Speed • Relatively fast to instantiate
• Run at close to bare hardware

speeds

• Very fast to instantiate
• Run at bare hardware speeds

• Very fast to instantiate
• Run at bare hardware speeds

This chart demonstrates some of the differences between virtual machines, containers and chroot
environments.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

25

Copyright © SUSE 2021

What is a Container Image?

● A container image is like the
skeleton of an application with just
enough of an operating system so
that it can work

● It can be thought of as the root
filesystem of the application

d76d23a13bf5:/ # ls -l
total 0
drwxr-xr-x 1 root root 630 Apr 6 08:00 bin
drwxr-xr-x 5 root root 360 Jul 16 11:08 dev
drwxr-xr-x 1 root root 2008 Jul 16 11:08 etc
drwxr-xr-x 1 root root 0 May 9 2017 home
drwxr-xr-x 1 root root 60 Apr 6 08:00 lib
drwxr-xr-x 1 root root 3424 Apr 6 08:00 lib64
drwxr-xr-x 1 root root 0 May 9 2017 mnt
drwxr-xr-x 1 root root 0 May 9 2017 opt
dr-xr-xr-x 333 root root 0 Jul 16 11:08 proc
drwx------ 1 root root 44 Apr 6 08:00 root
drwxr-xr-x 1 root root 118 Apr 6 08:00 run
drwxr-xr-x 1 root root 1222 Apr 6 08:00 sbin
drwxr-xr-x 1 root root 0 May 9 2017 selinux
drwxr-xr-x 1 root root 12 Apr 6 07:59 srv
dr-xr-xr-x 13 root root 0 Jul 16 11:08 sys
drwxrwxrwt 1 root root 0 Apr 6 08:00 tmp
drwxr-xr-x 1 root root 130 Apr 6 07:59 usr
drwxr-xr-x 1 root root 92 Apr 6 07:59 var

Images used by CRI-O or Docker in Kubernetes are in the OCI (Open Container Initiative) format. OCI is a
vendor neutral standard that has been adopted by many application container vendors such as Docker,
SUSE, Red Hat, and others.

Images are usually generated by means of a Dockerfile. A Dockerfile is a text document that contains all the
commands a user could call on the command line to assemble an image. Dockerfiles usually begin with a
base image that is called with a FROM command. Content is added via RUN commands that are usually
used to install applications and libraries needed to make the image do what it is designed to do. A Dockerfile
must also contain some kind of command, sometimes denotes with CMD, that will run a specific command
when the image is started as a container. A Dockerfile can be as simple as a few lines to install a single
application via a package manager like Zypper or can by hundreds of lines long to create complex images
with greater simplicity. A good example of a more complex Dockerfile that is used by Wordpress can be
found at: https://github.com/docker-library/wordpress/blob/master/php7.4/apache/Dockerfile.

On the right is an example of a filesystem of a basic container. It looks just like any other Linux filesystem and
that’s because it is. Building images is actually simpler than installing a complete OS in a VM and they only
require the specific pieces needed to run a single application.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

26

Copyright © SUSE 2021

What is a Container?

A container is an “instantiation” of and image, or in other words an
image that is put into action.

Images are put into action with container engines. Once it is put into
action, it can do what it was meant to do.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

27

Copyright © SUSE 2021

Container vs Image in Practice

● An image is a collection of one or more RO layers
● A container is an instantiation of an image
● A container adds a RW layer on top of the RO image layer(s) where

all changes are captured

Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)

Container image

Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)

Container image

RW layer

Container

A container is different from and image. Images contain the filesystem that will be used by a container and a
container is an “instantiation” of a container image.

Modern containers are comprised of layers. The base layer is the base collections of files/libraries/binaries
that will be used. These base container images are typically designed to be very generic in nature so that
that can be used by a wide array of containers. To create an application container image, you start with a
base image and then a new layer is added. This layer will contain all of the addition files/libraries/binaries
you need for your application. Because these additional layer are copy-on-write, you new layer could
contain files that exit in the base (or any other lower) layer but have been changed by you. New container
images can be created by either being based on a base image or another container image. The final
container image is a collection of the base layer and all additional layers o the image that it was based on.

When a container is launched from a container image, a copy of all of the layer that the image is comprised
of are downloaded and a copy-on-write read-write layer is added to the top. This layer captures all of the
changes made while the container is running. This read-write layer exists for as long as the container exists.
When the container is deleted this read-write layer is deleted.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

28

Copyright © SUSE 2021

Efficient Use of Disk Space

A single image can be used by multiple containers simultaneously.
The only additional disk space used is in the RW layers or each of the
containers.

Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)

Container image

RW layer

Container

Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)

Container image

RW layer

Container

Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)

Container image

RW layer

Container

Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)

Container image

RW layer

Container

Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)
Image layer (ro)

Container image

Because of the layering nature of container image and the fact that the layers (including and especially the
read-write layer) are copy-on-write, multiple instances of a container can be created and run
simultaneously from a single copy of the container image. This provide for very efficient use of storage space
when using containers.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

29

Copyright © SUSE 2021

Where Do You Get Images to Run As Containers?

Dad, where do
container images

come from?

Uhhhh...

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

30

Copyright © SUSE 2021

Image Registries

Images are stored in repositories called Image Registries.
Images can be downloaded (pulled) locally when needed to launch
containers.

Image Registries

Where container images need to reside on the local filesystem to be used, all possible images that are
available don’t always need to reside locally. Image registries can exist both remotely and locally that
contain a wide variety of container images for a wide range of applications. When you desire to run a
container of a specific application, if the required image does not already exist locally, the container engine
will download a copy of the image from a remote registry.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

31

Copyright © SUSE 2021

Container Engine

A Container Engine (like
containerd) allows a container to
run as an independent application
directly in an operating system.

Container engines also:
– Provide a network interface
– Separate containers from each

other
– Provide a way for containers to

access external storage

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

32

Copyright © SUSE 2021

?
Questions:

Q. What is a container image?

A. File system image of an application and all its requirements
(libraries, etc)

Q. What is a container?

A. A running instance of a container image.

Q. How do containers differ from virtual machines?

A. Contianers share the same kernel as the host OS and VMs
run on an abstracted hardware layer with their own OS.

Q. Where are container images stored?

A. Image registries.

Q. What do container engines provide?

A. Environment for a container to run independently and
isolated, network connection, connection to storage

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

33

Copyright © SUSE 2021

Understand Microservice
Architecture

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

34

Copyright © SUSE 2021

Monolithic Application Stack

OLD WAY

Let’s say we’re designing a new platform to compete with Uber

Problems with monolithic….

Unfortunately, this simple approach has a huge limitation. Successful applications have a habit of growing
over time and eventually becoming huge. During each sprint, your development team implements a few
more stories, which, of course, means adding many lines of code. After a few years, your small, simple
application will have grown into a monstrous monolith. To give an extreme example, I recently spoke to a
developer who was writing a tool to analyze the dependencies between the thousands of JARs in their
multi million line of code (LOC) application. I’m sure it took the concerted effort of a large number of ‑
developers over many years to create such a beast.

Once your application has become a large, complex monolith, your development organization is probably in
a world of pain. Any attempts at agile development and delivery will flounder. One major problem is that the
application is overwhelmingly complex. It’s simply too large for any single developer to fully understand. As a
result, fixing bugs and implementing new features correctly becomes difficult and time consuming. What’s
more, this tends to be a downwards spiral. If the codebase is difficult to understand, then changes won’t be
made correctly. You will end up with a monstrous, incomprehensible big ball of mud.

The sheer size of the application will also slow down development. The larger the application, the longer the
start up time is. For example, in a recent survey some developers reported start up times as long as ‑ ‑
12 minutes. I’ve also heard anecdotes of applications taking as long as 40 minutes to start up. If developers
regularly have to restart the application server, then a large part of their day will be spent waiting around
and their productivity will suffer.
Another problem with a large, complex monolithic application is that it is an obstacle to continuous
deployment.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

35

Today, the state of the art for SaaS applications is to push changes into production many times a day. This is
extremely difficult to do with a complex monolith since you must redeploy the entire application in order to
update any one part of it. The lengthy start up times that I mentioned earlier won’t help either. Also, since the ‑
impact of a change is usually not very well understood, it is likely that you have to do extensive manual
testing. Consequently, continuous deployment is next to impossible to do.

Monolithic applications can also be difficult to scale when different modules have conflicting resource
requirements. For example, one module might implement CPU intensive image processing logic and would ‑
ideally be deployed in Amazon EC2 Compute Optimized instances. Another module might be an in memory ‑
database and best suited for EC2 Memory optimized instances. However, because these modules are ‑
deployed together you have to compromise on the choice of hardware.

Another problem with monolithic applications is reliability. Because all modules are running within the same
process, a bug in any module, such as a memory leak, can potentially bring down the entire process.
Moreover, since all instances of the application are identical, that bug will impact the availability of the entire
application.

Last but not least, monolithic applications make it extremely difficult to adopt new frameworks and
languages. For example, let’s imagine that you have 2 million lines of code written using the XYZ framework. It
would be extremely expensive (in both time and cost) to rewrite the entire application to use the newer ABC
framework, even if that framework was considerably better. As a result, there is a huge barrier to adopting
new technologies. You are stuck with whatever technology choices you made at the start of the project.

To summarize: you have a successful business critical application that has grown into a monstrous monolith ‑
that very few, if any, developers understand. It is written using obsolete, unproductive technology that makes
hiring talented developers difficult. The application is difficult to scale and is unreliable. As a result, agile
development and delivery of applications is impossible.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

36

Copyright © SUSE 2021

Microservice Application

NEW WAY

Instead of building a single monstrous, monolithic application, the idea is to split your application into set of
smaller, interconnected services.

A service typically implements a set of distinct features or functionality, such as order management,
customer management, etc. Each microservice is a mini-application that has its own hexagonal architecture
consisting of business logic along with various adapters. Some microservices would expose an API that’s
consumed by other microservices or by the application’s clients. Other microservices might implement a
web UI. At runtime, each instance is often a cloud VM or a Docker container.

Each functional area of the application is now implemented by its own microservice. Moreover, the web
application is split into a set of simpler web applications (such as one for passengers and one for drivers in
our taxi hailing example). This makes it easier to deploy distinct experiences for specific users, devices, or ‑
specialized use cases.

Each backend service exposes a REST API and most services consume APIs provided by other services. For
example, Driver Management uses the Notification server to tell an available driver about a potential trip. The
UI services invoke the other services in order to render web pages. Services might also use asynchronous,
message based communication. Inter service communication will be covered in more detail later in this ‑ ‑
series.

Some REST APIs are also exposed to the mobile apps used by the drivers and passengers. The apps don’t,
however, have direct access to the backend services. Instead, communication is mediated by an
intermediary known as an API Gateway. The API Gateway is responsible for tasks such as load balancing,
caching, access control, API metering, and monitoring, and can be implemented effectively using NGINX.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

37

Copyright © SUSE 2021

Benefits of Microservices

● Improves application modularity

● Applications are easier to understand, develop and test

● Support parallel development enabling small autonomous teams to
develop, deploy and scale their services independently

● Help enable CI/CD & continuous refactoring

● Produce and ship a better quality product, faster

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

38

Copyright © SUSE 2021

?
Questions:

Q. How do microservices differ from monolothic applications?

A. Monolithic apps contain all functionality in a single binary,
where each function of a microservice is its own binary.
Monolithic apps are coded using a single language, where
each microservices app can be coded with different
languages.

Q. What are advantages of microservices?

A. Modularity, easier to develop/test, easier to version as each
part gets released independently

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

39

Copyright © SUSE 2021

Understand Kubernetes Concepts

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

40

Copyright © SUSE 2021

Kubernetes Overview

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

41

Copyright © SUSE 2021

What is Kubernetes?

● In short, Kubernetes is a portable, extensible, open-source platform
for managing containerized workloads and services

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

42

Copyright © SUSE 2021

Kubernetes is:

● Portable

X86

ARM

Kubernetes containers are portable across clouds and OS distributions. Images can also be build to be multi-
platform so a container that is build for one platform can also be built for another.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

43

Copyright © SUSE 2021

Kubernetes is:

● Portable

● Extensible

If Kubernetes doesn’t have the functions that you need, it can be extended through the use of network,
storage, and other plugins.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

44

Copyright © SUSE 2021

Kubernetes is:

● Portable

● Extensible

● Open Souorce
(Apache License 2.0)

Kubernetes is released under an Apache license which allows it to be used and shared with the community
instead of owned by only a specific company.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

45

Copyright © SUSE 2021

Kubernetes is:

● Portable

● Extensible

● Open Source

● A Framework to Manage
Containerized Workloads
and Services

It’s not enough to just have containers. Containers and their related workloads must be intelligently
managed. Kubernetes is the best platform to do that.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

46

Copyright © SUSE 2021

What Does Kubernetes Provide?

● Provides a complete orchestration solution for container based
applications
– Deploy Applications
– Manage Applications
– Access Applications
– Scale Applications

● Provides for scheduling of containers

● Provides a way to consume containers in a developer friendly way
– Abstracts infrastructure into consumable APIs
– Lets users manage applications not machines

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

47

Copyright © SUSE 2021

Kubernetes Infrastructure
Architecture

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

48

Copyright © SUSE 2021

Cluster Nodes: Controller

● Also known as the Control Plane
● Run Kubernetes processes that

coordinate the cluster
● Run Master etcd processes
● Do not run user workloads

Worker
node

Worker
node

Worker
node

Worker
node

Worker
node

Worker
node

Controller
node

Controller
node

Controller
node

Kubernetes Cluster

Controller Node
-kube-apiserver*
-kube-controller-manager*
-kube-scheduler*
-etcd

*Run on primary master node

Controller cluster nodes are Kubernetes nodes but they don’t run user workloads. These controller nodes run
the Kubernetes processes that coordinate the cluster, such as the API server, scheduler and controller
manager.

Controller nodes also run the master etcd processes that make up the etcd cluster. Because the controller
nodes run these master etcd processes there needs to be either a single controller node and two additional
worker nodes, when running a cluster in single-controller mode, or at least three controller nodes when
running a cluster in multi-controller mode. The requirement of at least three nodes is due to the quorum
requirements of an etcd cluster. If you have a single controller then the two additional etcd master processes
will run on worker nodes meaning you would have to have at least three total cluster nodes in the cluster (1
controller and 2 worker). When in multi-controller mode, you must have at least three controller nodes to run
the master etcd processes so that they don’t have to run on any worker nodes. If you have more that three
controller nodes you will still have only three etcd master processes running on three of the controller nodes.
Additional controller nodes beyond the three that run the ectd processes will only be used to scale out the
Kubernetes cluster coordination tasks. In practice you probably won’t need more that three Kubernetes
controllers in a cluster unless you have a very large cluster that is changing very often.

Kube-apiserver validates and configures data for the api objects which include pods, services, replication
controllers, and others. It provides the frontend to the cluster’s shared state through which all other
components interact

Kube-controller-manager watches the shared state of the cluster through the apiserver and makes changes
attempting to move the current state towards the desired state

Kube-scheduler schedules workloads for the cluster. It is a smart process that is policy-rich and topology-
aware

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

49

Copyright © SUSE 2021

Cluster Nodes: Worker

● Run User Workloads

Worker
node

Worker
node

Worker
node

Worker
node

Worker
node

Worker
node

Controller
node

Controller
node

Controller
node

Kubernetes Cluster

Worker Node
-kubelet
-kube-proxy
-User workloads (pods)

Worker cluster nodes are only used to run infrastructure service workloads and user workloads*. The
infrastructure services are workloads that provide additional services for the cluster infrastructure such as
Kube_DNS, Dex, etc. These infrastructure workloads can ether be deployed as part of the cluster deployment
or as add-ons after the fact.

* Except in the case of a single-controller cluster where two of them will run master etcd processes.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

50

Copyright © SUSE 2021

Kubernetes Application
Architecture

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

51

Copyright © SUSE 2021

Logical Hierarchy

Component Description
container - a sealed application package

pod - a small group of tightly coupled
 containers
 - the basic unit deployed on Kubernetes

controller - a reconciliation loop that drives
 the current state toward the desired
 state

service - network/routing policy that directs
 traffic to a deployed application

namespace - logically separated groups of
 resources

Service

C C

pod

C C

pod

ReplicaSet

Deployment

Namespace

Controllers

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

52

Copyright © SUSE 2021

?
Questions:

Q. What is Kubernetes?

A. Platform for orchestrating and managing container
workloads.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

53

Copyright © SUSE 2021

Understand SUSE Rancher
Kubernetes Offerings

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

54

Copyright © SUSE 2021

RKE

● CNCF certified distribution of
Kubernetes

● Based on upstream Kubernetes
but with 24x7 enterprise support
available

● Simplified installation

● Easy, safe, atomic upgrades

● Uses Docker as the container
engine

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

55

Copyright © SUSE 2021

RKE Government (RKE 2)

● CNCF certified version of
Kubernetes built for government
agencies

● FIPS-enabled alternative to RKE

● Uses Contanerd as the container
engine

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

56

Copyright © SUSE 2021

K3S

● Lightweight CNCF certified
distribution of Kubernetes

● Perfect for deploying on Edge, IoT,
CI and ARM

● Packaged as a single binary to
reduce dependencies and simplify
install and updates

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

57

Copyright © SUSE 2021

Rancher

● Enterprise ready platform for
managing Kubernetes

● Can both deploy and manage
Kubernetes clusters locally and in
the cloud

● Supports managing any certified
Kubernetes distribution

● Provides simplified cluster
operations and security, policy
and user management

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

58

Copyright © SUSE 2021

Shared Tools and Services

Rancher provides a rich catalog of
services for building, deploying and
scaling containerized applications,
including app packaging, CI/CD,
logging, monitoring and service
mesh.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

59

Section: 3
Kubernetes Administration

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

60

Copyright © SUSE 2021

Section Objectives:

1 Understand Basic Kubernetes
Commands

2 Work with Namespaces

3 Understand Kubernetes Manifests

4 Understand Multi-pod Deployment

5 Work with Deployments

6 Configure Networking for Applications

7 Use Environment Variables with
Applications

8 Use ConfigMaps

9 Work with Secrets

10 Work with Labels and Selectors

11 Configure Node Affinity in Kubernetes

12 Scale Out Applications

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

61

Copyright © SUSE 2021

Understand Basic Kubernetes
Commands

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

62

Copyright © SUSE 2021

The kubectl Command

● Main command for interacting with Kubernetes
● Default configuration file: ~/.kube/config

Syntax: kubectl VERB RESOURCE [OPTIONS]

Verbs are commands that are used on API Resources.
API Resources are objects that are interacted with in the cluster.

Find more information at: https://kubernetes.io/docs/reference/kubectl/overview/

Basic Commands (Beginner):
 create Create a resource from a file or from stdin.
 expose Take a replication controller, service, deployment or pod and expose it as a new Kubernetes
 Service
 run Run a particular image on the cluster
 set Set specific features on objects

Basic Commands (Intermediate):
 explain Documentation of resources
 get Display one or many resources
 edit Edit a resource on the server
 delete Delete resources by filenames, stdin, resources and names, or by resources and label
selector

Deploy Commands:
 rollout Manage the rollout of a resource
 scale Set a new size for a Deployment, ReplicaSet, Replication Controller, or Job
 autoscale Auto-scale a Deployment, ReplicaSet, or ReplicationControllerSUSE In

te
rn

al
an

d
Par

tn
er

 U
se

 O
nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

63

Cluster Management Commands:
 certificate Modify certificate resources.
 cluster-info Display cluster info
 top Display Resource (CPU/Memory/Storage) usage.
 cordon Mark node as unschedulable
 uncordon Mark node as schedulable
 drain Drain node in preparation for maintenance
 taint Update the taints on one or more nodes

Troubleshooting and Debugging Commands:
 describe Show details of a specific resource or group of resources
 logs Print the logs for a container in a pod
 attach Attach to a running container
 exec Execute a command in a container
 port-forward Forward one or more local ports to a pod
 proxy Run a proxy to the Kubernetes API server
 cp Copy files and directories to and from containers.
 auth Inspect authorization

Advanced Commands:
 diff Diff live version against would-be applied version
 apply Apply a configuration to a resource by filename or stdin
 patch Update field(s) of a resource using strategic merge patch
 replace Replace a resource by filename or stdin
 wait Experimental: Wait for a specific condition on one or many resources.
 convert Convert config files between different API versions
 kustomize Build a kustomization target from a directory or a remote url.

Settings Commands:
 label Update the labels on a resource
 annotate Update the annotations on a resource
 completion Output shell completion code for the specified shell (bash or zsh)

Other Commands:
 api-resources Print the supported API resources on the server
 api-versions Print the supported API versions on the server, in the form of "group/version"
 config Modify kubeconfig files
 plugin Provides utilities for interacting with plugins.
 version Print the client and server version information

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

64

Copyright © SUSE 2021

Help Resources

Command Description
kubectl --help -help with the kubeclt command and verbs

kubectl api-resources -list all API resources with their related verbs

kubectl explain RESOURCE -provides more details about the resource

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

65

Copyright © SUSE 2021

Listing Commands

The get verb is useful for listing resources and information about them.

Syntax: kubectl get RESOURCE

Command Examples Description
kubectl get nodes -list all nodes in the cluster
kubectl get pods -list all pods in your current namespace
kubectl get deployments -list all deployments in your current namespace

Option Examples Description
-n | --namespace -specify a namespace
-o wide -display extra details

kubectl get is a listing command. It simply lists all of the api-resources that you tell it to list.

Most api-resources exist in namespaces. -n or --namespace will tell the get command which namespace to
get the resources from. --all-namespaces will get resources from all namespaces.

-o wide will provide more verbose output from the command.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

66

Copyright © SUSE 2021

Description Commands

The verb describe always requires both the type of thing that you are describing and
the name of the thing that you are describing.

Syntax: kubectl describe RESOURCE

Command Examples Description
kubectl describe node -provide detailed info for a node
kubectl describe pod -provide detailed info for a pod
kubectl describe deployment -provide detailed info for a deployment

Option Examples Description
-n | --namespace -specify a namespace
-o wide -display extra details

kubectl describe shows details of a specific resource or group of resources.

Describe pulls out the most important information about a Resource from the Resource itself and related
Resources, and formats and prints this information on multiple lines.

Aggregates data from related Resources
Formats Verbose Output for debugging

The kubectl describe command should be the first command used to troubleshoot or get more information
about an api-resource.

For example, if a pod is failing, kubectl describe that pod will give you the majority of information needed
to begin troubleshooting an issue.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

67

Copyright © SUSE 2021

Deployment Commands

The create and apply verbs are used to create and update resources in the cluster.

Syntax: kubectl create RESOURCE
 kubectl create -f MANIFEST
 kubectl apply -f MANIFEST

Command Examples Description
kubectl create namespace -create a new namespace
kubectl create -f pod.yaml -create a pod from a manifest
kubectl apply -f pod.yaml -create/update a pod from a manifest

kubectl create will create resources directly from the command line or from a manifest for the purposes of
development or debugging.

kubectl apply is a command that will update an app to match state defined locally in a manifest file. This
includes creating a new app.

It is:
Fully declarative - don't need to specify create or update - just manage files
Merges user owned state (e.g. Service selector) with state owned by the cluster (e.g. Service clusterIp)

kubectl create and kubectl apply seem to be redundant. If you are simply deploying a manifest, they
can be used interchangably. However in practice, kubectl create should only be used in development
environments where it is not so important to be able to keep track of every manifest.

For example:

If you create a new namespace with kubectl create newproject, the newproject namespace doesn’t
necessarily need to be repeated again and again in a development environment.

If you need the newproject namespace deployment to be repeatable then it would be best to create it in a
manifest and deployed with: kubectl apply -f newproject.yaml

Question: Does it matter if you deploy a manifest with kubectl create or kubectl apply? Answer: No

However if you need to update any resource with a manifest, then you must always use kubectl apply and
never kubectl create because that isn’t something that kubectl create can do.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

68

Best practice:

kubectl create for dev environments that need resources to be created quickly.

kubectl apply for everything else and keep your manifest files safe or in source control so they can be
reused or updated as needed.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

69

Copyright © SUSE 2021

Delete Commands

The delete verb is used to remove resources from the cluster.

Syntax: kubectl delete RESOURCE_TYPE RESOURCE

Command Examples Description
kubectl delete namespace -delete a namespace
kubectl delete pod -delete a pod
kubectl delete deployment -delete a deployment

Option Examples Description
-f -specify a yaml file describing objects to delete
-n | --namespace -specify a namespace

kubectl delete will delete a single resource that does not have dependencies it them to another resource.

For example, if you delete a single pod that is not a part of the deployment, then that pod will be deleted. If
you delete a pod that is a part of a deployment, the pod will be recreated in a few seconds. This is useful if a
pod is non-responsive and you need to recreate it. However, if you want to delete the entire deployment,
then you should run:

kubectl delete deployment myapp

System resources can not be deleted.

For example:

> kubectl delete namespace kube-system
Error from server (Forbidden): namespaces "kube-system" is forbidden: this namespace may
not be deleted

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

70

Copyright © SUSE 2021

Basic Troubleshooting Commands

The following commands can be used to do some basic troubleshooting of resources.

Command Examples Description
kubectl logs myapp -receive app logs from a pod
kubectl exec -it myapp -- bash -launch a shell in a pod and connect to it
kubectl cp myapp:/var/log/message /home/tux
 -copy a file (/var/log/messages) from a
 pod to the local filesystem
kubectl cp testscript.sh myapp:/usr/local/bin
 -copy a file (testscript.sh) into a pod
kubectl edit service myservice -opens the default editor and edits the raw
 yaml for a service

kubectl logs will get the application logs for a specific pod. For example, if it is a mysql pod, it will provide
the output of /var/log/mysql.log

kubectl exec will execute a specific binary in a pod
-i is interactive
-t is in a new terminal
bash is the /bin/bash shell

This is a common way to inspect a running pod. Some pods do not include /bin/bash, some only have the
smaller /bin/sh, and some will have no shell application at all.

kubectl cp will allow you to copy file into or out of a running pod. This is rarely used in production, but can
be a quick fix for developers trying new things.

kubectl edit is similar to kubectl cp in that it is not usually used in a production environment. It is more of
a quick fix for troubleshooting. It also only edits a single instance of a resource. If you edit a single pod’s yaml
but you have 5 instances of it running, only the single instance will be edited. The rest will not change. In order
to change permanently, the edit will need to be in a manifest and redeployed.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

71

Copyright © SUSE 2021

?
Questions:

Q. What is the kubectl command used for?

A. The command use to interact with and administer
Kubernetes.

Q. What is the default config file for the kubectl command?

A. ~/.kube/config

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

72

Copyright © SUSE 2021

Exercises:
3-1: Use basic kubectl Commands

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

73

Copyright © SUSE 2021

Work with Namespaces

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

74

Copyright © SUSE 2021

What are Namespaces?

● An abstraction used by Kubernetes to support multiple virtual
clusters on the same physical cluster

● Organize objects in a cluster and provide a way to divide cluster
resources
(Resources names must be unique within a namespace, but not necessarily across
namespaces)

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

75

Copyright © SUSE 2021

Default Namespaces

default kube-system

kube-public kube-node-lease

default

The default namespace for objects with no other namespace

kube-system

The namespace for objects created by the Kubernetes system

kube-public

This namespace is created automatically and is readable by all users (including those not authenticated).
This namespace is mostly reserved for cluster usage, in case that some resources should be visible and
readable publicly throughout the whole cluster. The public aspect of this namespace is only a convention,
not a requirement.

kube-node-lease

This is a placeholder for future functionality.
See: https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/0009-node-heartbeat.md SUSE In

te
rn

al
an

d
Par

tn
er

 U
se

 O
nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

76

Copyright © SUSE 2021

Is Everything in a Namespace?

Answer: No

Some resources in Kubernetes do not exist in Namespaces

Examples:
Nodes represent servers or VMs and it doesn't make sense for them to
be in a namespace

Persistent Volumes can be used by resources in any namespace and
are not limited to just one

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

77

Copyright © SUSE 2021

The kube-system Namespace

● The namespace for objects created by the Kubernetes system

● Created when the Kubernetes cluster is first created

● All system pods, services, and other resources will be created in this
namespace

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

78

Copyright © SUSE 2021

?
Questions:

Q. What is a Namespace and how is it used in Kubernetes?

A. Namespaces are a way to organize objects in a cluster or
divide cluster resources into virtual clusters on a physical
cluster.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

79

Copyright © SUSE 2021

Exercises:
3-2: Work with Namespaces in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

80

Copyright © SUSE 2021

Understand Kubernetes Manifests

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

81

Copyright © SUSE 2021

Purpose of Manifests

● Files that describe how Kubernetes should configure objects or even
the cluster itself

● Simpler than providing each instruction manually via the API or
kubectl

● Created/stored in YAML format

● Designed for developers

● Easy to integrate into source control

Although you deploy directly via the API/Kubectl this would become cumbersome for complex deployments
and hard to maintain. Having a file that describes an app/deployment/service makes sense.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

82

Copyright © SUSE 2021

Manifest Structure

apiVersion:
kind:
metadata:
 labels:

spec:
 selector:

 template:

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

83

Copyright © SUSE 2021

Manifest Structure - Examples

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - conainerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: nginx-service

spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30000
 selector:
 app: nginx

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

84

Copyright © SUSE 2021

Best Practices for Manifests

● One manifest deploys one component

● Use versioned images for pods

● Always use a Deployment (even for 1 pod)

● Define/use environment variables

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

85

Copyright © SUSE 2021

?
Questions:

Q. What are manifests in Kubernetes?

A. Yaml files that contain definitions for objects in Kubernetes.

Q. How are manifests used in Kubernetes?

A. Used to crete and modify objects in Kubernetes.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

86

Copyright © SUSE 2021

Understand Multi-pod Deployment

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

87

Copyright © SUSE 2021

ReplicaSet

A ReplicaSet’s purpose is to maintain a stable set of replica Pods
running at any given time.

Often used to guarantee the availability of a specified number of
identical Pods.

I need 2 copies
of the blue app.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

88

Copyright © SUSE 2021

ReplicaSet

A ReplicaSet’s purpose is to maintain a stable set of replica Pods
running at any given time.

Often used to guarantee the availability of a specified number of
identical Pods.

Now I need 5

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

89

Copyright © SUSE 2021

When Should a ReplicaSet Be Used?

● When you need to ensure that a specified number of pod replicas
are running at a given time

● When you need the ability to scale a certain set of pods

A ReplicaSet ensures that a specified number of pod replicas are running at any given time. However, a
Deployment is a higher-level concept that manages ReplicaSets and provides declarative updates to Pods
along with a lot of other useful features. Therefore, we recommend using Deployments instead of directly
using ReplicaSets, unless you require custom update orchestration or don’t require updates at all.

This actually means that you may never need to manipulate ReplicaSet objects: use a Deployment instead,
and define your application in the spec section.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

90

Copyright © SUSE 2021

StatefulSet

Manages Pods that are based on an identical container spec.

Maintains a sticky identity for each of their Pods.

Pods are created from the same spec, but are not interchangeable.
(Each has a persistent identifier that it maintains across any rescheduling)

I need 4 copies of the blue app.
They should be in order
with their own storage 1 2 3 4

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

91

Copyright © SUSE 2021

When Should a StatefulSet Be Used?

StatefulSets are valuable for applications that require one or more of
the following:

● Stable, unique network identifiers
● Stable, persistent storage
● Ordered, graceful deployment and scaling
● Ordered, automated rolling updates

In the above, stable is synonymous with persistence across Pod (re)scheduling. If an application doesn’t
require any stable identifiers or ordered deployment, deletion, or scaling, you should deploy your application
using a workload object that provides a set of stateless replicas. Deployment or ReplicaSet may be better
suited to your stateless needs.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

92

Copyright © SUSE 2021

DaemonSet

Ensures that all (or some) Nodes run a copy of a Pod.

As nodes are added to the cluster, Pods are added to them.

As nodes are removed from the cluster, those Pods are garbage
collected.

Deleting a DaemonSet will clean up the Pods it created.

I need to run Cillium
on every node.

If you need a specific application to be run on every node, it would be best to use a DaemonSet. When a new
node is created, a new instance of the application will be installed on the node after adding it to the new
node.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

93

Copyright © SUSE 2021

When Should a DaemonSet Be Used?

DaemonSets are valuable for cluster services that need to be running

on every node or a specific subset of nodes.

A DaemonSet ensures that a replica of a service is running on either all cluster nodes or on a specified
subset of nodes. This is particularly useful for cluster services such as networking services that need to be
present on all nodes where user workloads could be run in order to forward their network traffic. Networking
services are not the only types of services that can benefit from this type. Basically any service that needs to
be running on a node as part of that node’s default set of services should be deployed as a DemonSet. This
also ensures that any new nodes of the type that run these services will automatically get an instance of the
DaemonSet service when the node is deployed. When a node is removed the instance of the service on that
node is removed and garbage collected and not restarted on another node.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

94

Copyright © SUSE 2021

Deployment

● A Deployment provides declarative updates for Pods and
ReplicaSets

● The use of plain ReplicaSets are being phased out in favor of
Deployments as they create ReplicaSets automatically

● Have the ability to use simple and rolling updates

● They can either be Stateful or Stateless

A ReplicaSet ensures that a specified number of pod replicas are running at any given time. However, a
Deployment is a higher-level concept that manages ReplicaSets and provides declarative updates to Pods
along with a lot of other useful features. Therefore, the Kubernetes developers suggest using Deployments
instead of ReplicaSets.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

95

Copyright © SUSE 2021

Stateful vs Stateless Deployments

Stateful
● A stateful application requires

permanent storage.

● This storage is usually a network-
based solution.

Stateless
● A stateless application does not

need a permanent storage
solution.

● Any temporary storage is within
the pod itself.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

96

Copyright © SUSE 2021

Deployment Use Cases
● Create a Deployment to rollout a ReplicaSet

● Declare the new state of the Pods by updating the PodTemplateSpec
of the Deployment

● Rollback to an earlier Deployment revision if the current state of the
Deployment is not stable

● Scale up the Deployment to facilitate more load

● Pause the Deployment to apply multiple fixes to its PodTemplateSpec
and then resume it to start a new rollout

● Use the status of the Deployment as an indicator that a rollout is
stuck

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

97

Copyright © SUSE 2021

Deployment Manifest Layout

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

PodTemplateSpec

Deployment manifests declare the following:

The name of the deployment: nginx-deployment
Any labels associated with it: nginx
The number of replicas associates with the deployment: 2
The container image that will be used to create the pod: nginx:1.7.9
The tcp port that the pod will be expecting network traffic to be incoming on: 80

It is also Stateless because it is not using any kind of external storage. Once the deployment is deleted, any
information associated with it will be removed also.

These are just the basics. It is also possible to declare how to update a file, either all at once or via rolling
updates.

Notice the selected section of the manifest above is known at the PodTemplateSpec. This part of the
manifest is like a manifest inside of a manifest as it has its own metadata and specification sections. This
configuration defines the pod(s) that will be created as part of the Deployment.

The Selector in the Deployment manifest specifies a label (matchLabels) that corresponds with the labels set
in the metadata.labels section of the PodTemplateSpec that tells the Deployment which pods belong to it.

If a new version of a Deployment manifest is deployed and anything in this section is changed, this will trigger
a new state in the Deployment that will need to be rolled out to all pods

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

98

Copyright © SUSE 2021

?
Questions:

Q. What are the 4 common controllers used for multi-pod
deployment?

A. ReplicaSet, StatefulSet, DaemonSet, Deployment.

Q. What is the difference between a stateless and stateful
deployment?

A. Stateful requires persistent storage and stateless do not.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

99

Copyright © SUSE 2021

Work with Deployments

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

100

Copyright © SUSE 2021

Deploy a Simple Stateless Application

Command: kubectl apply -f nginx-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - conainerPort: 80

Manifest:

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

101

Copyright © SUSE 2021

Display the Status of a Deployment

Command: kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

nginx-deployment 2/2 2 2 5m33s

kubectl get deployments provides:

The number of pods are that in a ready status and the number that have are expected
The number of pods that are currently updated. This is useful if there are a large number of pods that need
to be updated to a new version
The number of pods that are available

The -o wide option provides in addition:

NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR
nginx-deployment 2/2 2 2 21m nginx nginx:1.7.9 app=nginx

The name and image of the containers
Any selector that is used with the deployment

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

102

Copyright © SUSE 2021

Display the Details of a Deployment
Command: kubectl describe deployment nginx-deployment

Name: nginx-deployment
Namespace: default
CreationTimestamp: Mon, 24 Feb 2020 12:56:12 +0100
Labels: env=app
 owner=nginx
Annotations: deployment.kubernetes.io/revision: 1
 kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"apps/v1","kind":"Deployment","metadata":{"annotations":{},"labels":
{"env":"app","owner":"nginx"},"name":"nginx-deployment",...
Selector: app=nginx
Replicas: 2 desired | 2 updated | 2 total | 2 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: app=nginx
 Containers:
 nginx:
 Image: smt.example.com:5000/nginx:1.7.9
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx-deployment-7db4d6564b (4/4 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 2m16s deployment-controller Scaled up replica set nginx-deployment-7db4d6564b to 2

kubectl describe deployment provides more detail on everything. It also provides the update strategy
when moving from one version to another and it provides a list of events that have happened to the
Deployment.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

103

Copyright © SUSE 2021

Delete a Deployed Application

Command: kubectl delete deployment nginx-deployment
 or
 kubectl delete -f nginx-deployment.yaml

As all our objects are linked via the deployment it will delete all of them
(ReplicaSets, Service etc).

Note: This will not necessarily delete any persistent storage used depending on how
the storage is configured.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

104

Copyright © SUSE 2021

Update a Deployed Application

Command: kubectl apply -f nginx-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.0
 ports:
 - conainerPort: 80

Updated
Manifest:

Update the existing yaml file

(or create a new one)

You can update any part of the deployment and Kubernetes will ensure the relevant changes are applied
automatically when we rerun the apply command.

This is one case where you must use the kubectl apply command and never the kubectl create
command.

You can either update the existing yaml file and rerun or you can create a new one and run it – Kubernetes
won’t care about the difference. Kubectl has no concept of file management. This gives you power when
combined with source control and file versioning.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

105

Copyright © SUSE 2021

Rolling Upadate a Deployed Application
apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 25%
 maxSurge: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.0
 ports:
 - conainerPort: 80

Updated
Manifest:

Update the image and ensure

that there is no chance of

disruption:
• Only take down 25% of pods at a

time for patching

• Have as many as 2 extra pods

running temporarily

This deployment manifest will update the image and ensure that there is no chance of disruption. It will only
take down 25% of pods at a time for patching and may have as many as 2 extra pods running temporarily.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

106

Copyright © SUSE 2021

Advantages of Rolling Updates

● Old pods removed and new updated pods created
(Note: The pods name will change when you run kubectl get pods)

● Updates one pod at a time to ensure the replica set conditions are
still met

● Ensure a minimum number of pods are always running

● Temporarily surge above the desired number of replicas

Kubernetes will remove old pods and create the new ones (note the pods name will change when you do
kubectl get pods). It will do this one pod at a time to ensure the replica set conditions are still met (always 2
instances running). Always consider this when designing new applications to avoid impact on stateful
requirements.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

107

Copyright © SUSE 2021

?
Questions:

Q. In the rollingUpdate: section of the strategy: section of a
deployment manifest, what does the maxSurge: property do?

A. Specify the number of addition pods that will be created
duting the rolling update so that service can be maintained.

Q. What command would you use to remove a deployment and
its pods?

A. kubectl delete deployment <deployment _name>

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

108

Copyright © SUSE 2021

Exercises:
3-3: Deploy a Simple Pod Using a Deployment
3-4: Delete and Redeploy a Deployment
3-5: Update a Pod in a Deployment

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

109

Copyright © SUSE 2021

Configure Networking for
Applications

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

110

Copyright © SUSE 2021

What are Services?

Enable apps to be accessed by users,
the web, or even from other apps.

Provide a stable interface to your
apps.

Services enable applications to be accessed via the network both from inside and outside of the cluster.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

111

Copyright © SUSE 2021

ClusterIP

The ClusterIP service type allows
traffic inside of Kubernetes to that
application.

Each pod has it’s own internal IP.

By default, this IP is not available from
outside of the cluster.

Not every application needs direct
traffic from outside of the cluster.

ClusterIPs are provisioned from each node’s CIDR (IP address range) that is set up by Cilium when the node is
added to the cluster.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

112

Copyright © SUSE 2021

NodePort

NodePort provides a unique port for an
application.

The IP/FQDN of the service would be
that of a kubernetes node in your
cluster.

The Port is accessible on every node.

Example:
http://worker01.example.com:31000

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

113

Copyright © SUSE 2021

LoadBalancer

Provides unique IP addresses per
app.

IPs come from a pool of available
addresses that you allocate.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

114

Copyright © SUSE 2021

LoadBalancer

Public cloud providers have their own
LoadBalancers that can be used.
Some providers like AWS provide full
FQDN instead of IPs for Kubernetes.

The LoadBalancer service type is not
built into the Kubernetes cluster at
the current time. This must be
installed with an application like
Metallb.

Metallb (Metal Load balancer) is a project that provides the Kubernetes load balancer service and can be
installed in your cluster. However it is not currently supported by SUSE.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

115

Copyright © SUSE 2021

Example Service Manifests

apiVersion: v1

kind: Service

metadata:

 name: mysql-service

spec:

 type: ClusterIP

 selector:

 app: mysql

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

spec:

 type: NodePort

 ports:

 - port: 80

 nodePort: 30000

 selector:

 app: nginx

apiVersion: v1

kind: Service

metadata:

 name: tomcat-service

spec:

 type: LoadBalancer

 selector:

 app: tomcat

ClusterIP NodePort LoadBalancer

ClusterIP

In applications like databases, it is best to not have direct access from outside but applications inside of
Kubernetes may need access to it.

Normally it is ideal for applications to be able to be accessed by users but you don’t want a database to be
available.

ClusterIP will allow that access from inside of the cluster but not outside.

NodePort

If you uses the NodePort service type, you will need to specify the local port that the application is expecting
traffic in on. You can also specify which NodePort to use in the 30000-39999 range or Kubernetes will
automatically choose one for you.

LoadBalancer

If a load balancer application is installed on your cluster, then this type will cause the load balancer to
provision an IP or FQDN to this application.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

116

Copyright © SUSE 2021

?
Questions:

Q. What is a Service in Kubernetes and how is one used?

A. An object created in kuberenetes that allows an application
to be accessed via the network.

Q. What are the 3 different types of services?

A. ClusterIP, NodePort, LoadBalancer.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

117

Copyright © SUSE 2021

Exercises:
3-6: Create and Edit a Service for an Application

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

118

Copyright © SUSE 2021

Use Environment Variables with
Applications

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

119

Copyright © SUSE 2021

Environment Variables

● Environment variables can be set in pods when they are deployed

● Containers commonly use environment variables to configure their
application at runtime

(Check the container image description in the container image registry to
determine which variables a container can/must use before creating a
manifest)

When you create a Pod, you can set environment variables for the containers that run in the Pod. To set
environment variables, include the env or envFrom field in the configuration file.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

120

Environment Variable Example

In this pod, a new environment variable

will be added DEMO_GREETING with the

value of "SUSE Rocks!"

kind: Pod
apiVersion: v1
metadata:
 name: envar-demo
 labels:
 purpose: demonstrate-envars
spec:
 containers:
 - name: envar-demo-container
 image: gcr.io/google-samples/node-
hello:1.0
 env:
 - name: DEMO_GREETING
 value: "SUSE Rocks!"

Manifest:

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

121

Copyright © SUSE 2021

?
Questions:

Q. How are environment vairables used in Kubernetes?

A. They are used to set environmet variables inside of
containers in a pod. These variables can then be used by
applications running in the pod.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

122

Copyright © SUSE 2021

Exercises:
3-7: Use Environment Variables in a Pod

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

123

Copyright © SUSE 2021

Use ConfigMaps

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

124

Copyright © SUSE 2021

ConfigMaps

● Environment variables can be set in pods via ConfigMaps when they
are deployed

● Containers commonly use environment variables to configure their
application at runtime

● ConfigMaps allow for environment variables to bet set
independently from the pod’s manifest

When you create a Pod, you can set environment variables for the containers that run in the Pod. TO allow for
a wider degree of flexibility these environment variables can be set in separate ConfigMaps rather
theembedded in the pod spec. To set environment variables via ConfigMaps, include the envFrom field in
the configuration file and then reference the name of the ConfigMap that contains the key:value pairs..

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

125

ConfigMap Example

In this ConfigMap, two new environment

variables will be added:
 CONFIGMAP_VAR1 with the value of "configmap_value_1"

 CONFIGMAP_VAR2 with the value of "configmap_value_2"

kind: ConfigMap
apiVersion: v1
metadata:
 name: my-configmap
data:
 CONFIGMAP_VAR1: configmap_value_1
 CONFIGMAP_VAR2: configmap_value_2

Manifest:

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

126

Example Pod Using a ConfigMap

In this pod, new environment variables

will be added by reading them from a

ConfigMap named my-configmap

kind: Pod
apiVersion: v1
metadata:
 name: configmap-demo
 labels:
 purpose: demonstrate-configmaps
spec:
 containers:
 - name: configmap-demo-container
 image: gcr.io/google-samples/node-
hello:1.0
 envFrom:
 - configMapRef:
 name: my-configmap

Manifest:

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

127

Copyright © SUSE 2021

?
Questions:

Q. What are ConfigMaps and how are they used in Kubernetes?

A. Objects in Kubernets that contain key-value pairs that can
be exposed to pods resulting in environment variables being
set in the containers.

Q. How are ConfigMaps different from environment variables set
in pods?

A. ConfigMaps allow environment variables to be set
independently from pods.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

128

Copyright © SUSE 2021

Exercises:
3-8: Use ConfigMaps with a Pod

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

129

Copyright © SUSE 2021

Work with Secrets

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

130

Copyright © SUSE 2021

Secrets in a Kubernetes Cluster

● Secrets allow you to securely store values in a Kubernetes cluster
such as:
– usernames/passwords
– encryption keys
– certificates
– (etc)

● Secrets can be accessed by pods when needed

Kubernetes Secrets let you store and manage sensitive information, such as passwords, OAuth tokens, and
ssh keys. Storing confidential information in a Secret is safer and more flexible than putting it verbatim in a
Pod definition or in a container image.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

131

Copyright © SUSE 2021

How are Secrets Accessed?

To use a secret, a Pod needs to reference the secret.

A secret can be used with a Pod in different ways:
● As files in a volume mounted on one or more of its containers
● As environment variables set in the pod
● By the kubelet via the imagePullSecret field when pulling images for

the Pod

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

132

Copyright © SUSE 2021

Define a Secret from a File

Any values you wish to store in the secret are entered into a file.

Example command for username/password:

 kubectl create secret generic mysecret1 \
 --from-file=mysecret1.txt

Example command for public ssh key:
 kubectl create secret generic sshpubkey \
 --from-file=~/.ssh/id_rsa.pub

username: user1
password: password1

mysecret1.txt:

When storing a file as a secret the entire file is stored as the data in the secret. The content of the file can be
formatted in any way that would be needed by the application. The secret file in this example is very simple
for the sake of demonstration. It simply contains a username and password that could be accessed by an
app that needs them.

Command breakdown:

kubectl create secret generic mysecret1 –from-file=mysecret1.txt

kubectl create secret Create a secret using specified subcommand

generic Create a secret from a local file, directory or literal value. Other secret
types include docker-registry and tls

mysecret The name of the secret that Kubernetes will recognize. This can be
anything

--from-file=mysecret1.txt The file that contains the secretSUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

133

Copyright © SUSE 2021

Define a Secret as Key/Value Pairs from the CLI

Values defined from the command line are plain text.

Command: kubectl create secret generic mysecret2 \
 --from-literal=username=user2 \

 --from-literal=password=password2

The values provided on the command line in the --from-literal flag are plain text.. When the secret is defined
the key/value pairs are the data that is stored in the secret.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

134

Copyright © SUSE 2021

Define a Secret as Key/Value Pairs in YAML

Command: kubectl apply -f mysecret2.yaml
apiVersion: v1
kind: Secret
metadata:
 name: mysecret2
type: Opaque
data:
 username: dXNlcjI=
 password: cGFzc3dvcmQy

Manifest:
Base64 encoded

values

Values defined in the yaml file must be base64 encoded

Commands: echo -n “user2” | base64

 echo -n “password2” | base64

The values stored in a yaml file must first be base64 encoded. When the secret is defined the key value pairs
are the data that is stored in the secret.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

135

Copyright © SUSE 2021

List Secrets

List the defined secrets.

Syntax: kubectl get secrets

> kubectl get secrets
NAME TYPE DATA AGE
default-token-hkf9w kubernetes.io/service-account-token 3 9d
mysecret1 Opaque 1 55m13s
sshpubkey Opaque 1 55m42s
mysecret2 Opaque 2 56m25s

A service-account-token is a secret that is assigned to a service account.

Service accounts automatically create and attach Secrets with API credentials
Kubernetes automatically creates secrets which contain credentials for accessing the API and automatically
modifies your Pods to use this type of secret.

The automatic creation and use of API credentials can be disabled or overridden if desired. However, if all you
need to do is securely access the API server, this is the recommended workflow.

See the ServiceAccount documentation for more information on how service accounts work.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

136

Copyright © SUSE 2021

Describe Secrets

Display details of the secret.

Syntax: kubectl describe secrets mysecret1
 kubectl describe secrets mysecret2

> kubectl describe secrets mysecret1
Name: mysecret1
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
mysecret1.txt: 100 bytes

> kubectl describe secrets mysecret2
Name: mysecret2
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
password: 9 bytes
username: 5 bytes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

137

Copyright © SUSE 2021

Use Secrets

apiVersion: v1
kind: Pod
metadata:
 name: pod-file-secret
spec:
 containers:
 - name: opensusepod
 image: opensuse/leap
 command:
 - "bin/bash"
 - "-c"
 - "sleep 10000"
 volumeMounts:
 - name: secretmnt
 mountPath: "/mnt/secret"
 volumes:
 - name: secretmnt
 secret:
 secretName: mysecret1

apiVersion: v1
kind: Pod
metadata:
 name: pod-env-secret
spec:
 containers:
 - name: mypod
 image: redis
 env:
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret2
 key: username
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysecret2
 key: password

Secret Stored as a File Secret Stored as Key/Value Pairs

Command breakdown:

Option 1:

kubectl apply -f mysecret.yaml

mysecret.yaml The YAML file containing the secret definition

Option 2:

kubectl create secret generic supersecretsauce –from-file=secret.txt

kubectl create secret Create a secret using specified subcommand

generic Create a secret from a local file, directory or literal value. Other secret types
include docker-registry and tls

mysecret The name of the secret that Kubernetes will recognize. This can be anything

--from-file=secret.txt The file that contains the secret

This secret file is very simple for the sake of demonstration. It simply contains a usernname and password
that could be accessed by an app that needs them.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

138

Copyright © SUSE 2021

Access Secrets

> kubectl exec -it pod-file-secret -- bash
pod-file-secret:/ # cat /mnt/secret/mysecret1.txt

username:user1
password:password1

Secret Stored as a File

Secret Stored as Key/Value Pairs
> kubectl exec -it pod-env-secret -- bash
pod-env-secret:/ # echo ${SECRET_USERNAME}
user2
pod-env-secret:/ # echo ${SECRET_PASSWORD}
password2

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

139

Copyright © SUSE 2021

?
Questions:

Q. How are secrets used in Kubernetes?

A. The securily store values in the Kubernetes cluster.

Q. In what ways can secrets be accessed in a pod?

A. Environment variables key value pairs, files.

Q. What typs of things can be stored as secrets?

A. usernames:passwords, ssh keys, certificates.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

140

Copyright © SUSE 2021

Exercises:
3-9: Define and Access Secrets as Volumes
3-10: Define and Access Secrets as Environment
Variables

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

141

Copyright © SUSE 2021

Work with Labels and Selectors

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

142

Copyright © SUSE 2021

What are Labels and Selectors?

Labels
● Metadata that can be attached to

API objects such as pods that
generally represent identity

● They can be attributes in
manifests or assigned manually

Selectors

● Functions in kubectl that can
query API objects that use labels

● Queries can be a simple get
command or it can be an action
such as delete that applies only
to the labels that match the query

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

143

Copyright © SUSE 2021

Here are some identical pods ...

pod1

pod3

pod2

pod4

pod5

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

144

Copyright © SUSE 2021

Here is the manifest for one of the pods ...

pod1

pod3

pod2

pod4

pod5

apiVersion: v1
kind: Pod
metadata:
 name: pod4
 labels:
 env: "ringo"
 owner: beatle
 instrument: drums
spec:
 containers:
 - name: sise
 image: simpleservice:0.5.0
 ports:
 - containerPort: 9876

This is the manifest for one of the pods. In this manifest, the name of the pod is pod3. This isn’t very
descriptive, but it does have some more attributes.

It has 3 labels:

 labels:
 env: "george"
 owner: beatle
 guitar: rhythm

These labels can be anything. Both the labels and the values that they represent are open ended. This allows
you the flexibility to use labels in the way that works best for your project.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

145

Copyright © SUSE 2021

Each has one label with differing values ...

pod1

pod3

pod2

pod4

pod5

owner: beatle

owner: monkee

All of the pods have labels for that owner. That would be similar to which version that they belonged to. If you
need to specify which version of a pod is 1.0 and be able to act on it, it would be as simple as assigning it a
label for 1.0. An older version of the pod could be another version.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

146

Copyright © SUSE 2021

Select pods by an "owner" label ...

pod1

pod3

pod2

pod4

owner: beatle

kubectl get pods --selector owner=beatle

Labels can be acted upon with selectors. The selector for owner=beatle will not include pods with a label of
owner=monkey.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

147

Copyright © SUSE 2021

Select pods by a different "owner" label ...

pod5owner: monkee

kubectl get pods --selector owner=monkee

Similarly a selector for owner=monkey would not include any with an owner=beatle label.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

148

Copyright © SUSE 2021

Add a label to a pod ...

pod5owner: monkey
surname: jones

kubectl label pods pod5 surname=jones

Pods can also receive labels after they have been created. In this example, pod5 has been given a new label
surname=jones. The new label surname can have a value that can be used to differentiate pod5 from other
pods that share the label monkey.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

149

Copyright © SUSE 2021

Test the new label ...

pod5surname:jones

kubectl get pods --selector surname=jones

Selecting on the new label surname=jones should return the appropriat pod..

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

150

Copyright © SUSE 2021

Get all labels ...

pod1

pod3

pod2

pod4

pod5

Command Output:

NAME READY STATUS RESTARTS AGE LABELS
pod1 1/1 Running 0 2m24s env=john,owner=beatle
pod2 1/1 Running 0 2m24s env=paul,owner=beatle
pod3 1/1 Running 0 2m24s env=george,owner=beatle
pod4 1/1 Running 0 2m24s env=ringo,owner=beatle
pod5 1/1 Running 0 2m24s env=davy,owner=monkee,surname=jones

kubectl get pods --show-labels

Kubectl get pod can also list all labels using the --list-labels flag. This will help if there are multiple
resources in a directory with similar names. By remembering to add labels, we can make working with pods
much easier.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

151

Copyright © SUSE 2021

Delete pods using a selector ...

pod1

pod3

pod2

pod4

owner: beatle

kubectl delete pods --selector owner=beatle

By deleting pods with the owner=beatle selector, any other pods will remain untouched. Listing and deleting
aren’t the only functions that can be used with labels and selectors, but they are some of the most common.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

152

Copyright © SUSE 2021

?
Questions:

Q. What are labels in Kubernetes?

A. A way to tag objects in Kubernetes cluster.

Q. How are labels used in Kubernetes?

A. Selectors are used to select objects based on labels so that
can be acted upon.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

153

Copyright © SUSE 2021

Exercises:
3-11: Work with Labels and Selectors

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

154

Copyright © SUSE 2021

Configure Node Affinity in
Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

155

Copyright © SUSE 2021

Options for Pod/Node Affinity

● Kubernetes provides a couple of options to create pod/node affinity

● Each option's approach is slightly different though the end results
are similar

● Options:
– Node Selectors
– Taints and Tolerations

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

156

Copyright © SUSE 2021

NodeSelectors

● Labels are applied to Nodes
● Pods specs are updated with

NodeSelectors for the corresponding
labels

● Pods will prefer to be scheduled on nodes
with labels that match their nodeSelctor

● Approach: Attraction vs Rejection

> kubectl label nodes worker01 disktype=ssd

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 nodeSelector:
 disktype: ssd

Pod

Ooo, I like candy!

Node

I have candy.

Command:

Example Manifest:

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

157

Copyright © SUSE 2021

Taints and Tolerations

● Taints are applied to Nodes
● Pods specs are updated with tolerations

for the corresponding taints
● The nodes will only allow pods with

tolerations for their nodes' taints to be
scheduled on them

● Approach: Rejection vs Attraction

> kubectl taint nodes worker01 disktype=ssd:NoSchedule

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 tolerations:
 - key: "disktype"
 operator: "Equal"
 value: "ssd"
 effect: "NoSchedule"Pod

I don't care.
I like you anyway.

Node

I am rude and
have bad breath

Command:

Example Manifest:

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

158

Copyright © SUSE 2021

?
Questions:

Q. NodeSelectors are used to attract pods to nodes. (True or
False)

A. True

Q. Taints are used to repel pods away from nodes. (True or False)

A. True

Q. Tolerations are used to attract pods to nodes. (True or False)

A. False

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

159

Copyright © SUSE 2021

Exercises:
3-12: Work with Node Selectors

3-13: Work with Taints and Tolerations

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

160

Copyright © SUSE 2021

Scale Out Applications

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

161

Copyright © SUSE 2021

Horizontally Scale an Application

● When deploying or redeploying an
application, the replica spec can
be defined

● If the number is changed and the
manifest is redeployed, then the
matching number of pod replicas
will change also

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 4
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.0
 ports:
 - conainerPort: 80

Manifest:

Horizontal scaling is adding more pods. Vertical scaling is adding more nodes or a new Kubernetes cluster.

The number of pods that you need is entirely dependent on the workload that you are expecting. For
example, a background service such as for handling backups may only be needed once a day and have
minimum requirements or a production web service may get a standard amount of traffic 46 weeks out of
the month but the 6 weeks before the end of the year, it might rise 100-200% or more. If you know how much
to expect depending on the time of the year, you can manually change the number of application pods. If
you don’t, you can opt for automatic scaling.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

162

Copyright © SUSE 2021

Horizontally Scale an Application

Apps can be scaled using the command line or by updating a manifest.

Command:
 kubectl apply -f nginx-deployment.yaml
 or
 kubectl scale deployments nginx-deployment --replicas=4

The second command will scale a deployment to 4 pods without editing
the manifest.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

163

Copyright © SUSE 2021

HorizontalPodAutoscaler

Monitors metrics of the cluster and uses these
to automatically scale pod replicas out and
back.

Example:
● App to be scaled: php-apache
● The minimum number of pods: 1
● The maximum number: 10
● If the CPU Utilization of the node is ≥ 50%,

then more pods will be created

Note: Other metrics can also be used with an
autoscaler

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: php-apache
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: php-apache
 minReplicas: 1
 maxReplicas: 10
 targetCPUUtilizationPercentage: 50

Manifest:

Requirements for autoscaling:

-Metrics server deployed
-Autoscaler
-An application that can be scaled

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

164

Copyright © SUSE 2021

?
Questions:

Q. Individual pods can be scaled out on Kubernetes without a
Deployment. (True or False)

A. False

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

165

Copyright © SUSE 2021

Exercises:
3-14: Scale a Deployment
3-15: Configure Horizontal Pod Autoscaling

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

166

Section: 4
Application Management on Kubernetes with
Kustomize

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

167

Copyright © SUSE 2021

Section Objectives:

1 Understand Kustomize Concepts

2 Use Kustomize to Deploy Applications

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

168

Copyright © SUSE 2021

Understand Kustomize Concepts

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

169

Copyright © SUSE 2021

What is Kustomize?

Simply said, Kustomize is:

● Native Kubernetes Configuration Management

● A declarative tool that works directly with yaml

● A template-free way to customize application
configuration

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

170

Copyright © SUSE 2021

How is Kustomize Kubernetes Native?

● Built into kubectl as of v 1.14 (kubectl -k)

● Operates on standard Kubernetes objects

● Uses plain yaml and standard manifest file structure

● Matches the same "declarative" ideology as Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

171

Copyright © SUSE 2021

How is Kustomize Declarative?

● You declare exactly what you want in standard yaml
manifests and Kustomize generates the final manifest

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

172

Copyright © SUSE 2021

How is Kustomize Template Free?

● You do not provide a templatized version of the manifest

● You do provide standard, valid, independently deployable
Kubernetes manifests

● Acts as a yaml patching system rather than a template
engine
(It acts as a "stream editor" like sed to add/delete/update the final manifest)

● What you provide can be "stackable" in that each can be
applied to the final manifest in layers

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

173

Copyright © SUSE 2021

?
Questions:

Q. What is Kustomize and how is it used?

A. A native Kubernetes, template free way to customize
application configuration.

Q. ​​​How is Kustomize "native" to Kubernetes?

A. As of Kubernetes 1.14 kubectl supports management of
Kubernetes object using Kustomize.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

174

Copyright © SUSE 2021

Use Kustomize to Deploy
Applications

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

175

Copyright © SUSE 2021

Example Directory Structure
app\
 |-base\
 | |-deployment.yaml
 | |-service.yaml
 | |-kustomization.yaml
 |
 |-overlays\
 |-dev\
 | |-nodeport.yaml
 | |-kustomization.yaml
 |
 |-stage\
 | |-nodeport.yaml
 | |-replicas.yaml
 | |-kustomization.yaml
 |
 |--prod\
 |-nodeport.yaml
 |-replicas.yaml
 |-kustomization.yaml

Base Manifests

Overlay/Patch
Manifests

Dev
Deployment

Stage
Deployment

Prod
Deployment

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

176

Copyright © SUSE 2021

Example "Base" Manifests

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 type: NodePort
 ports:
 - port: 80
 selector:
 app: nginx

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 env: "apps"
 owner: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

deployment service kustomization

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
 - deployment.yaml
 - service.yaml

Command: kubectl apply -k app/base/

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

177

Copyright © SUSE 2021

Example "Base" Manifests

resulting deployment resulting service kustomization

Command: kubectl apply -k app/overlays/prod/

replicas.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 4

apiVersion: apps/v1
kind: Deployment
metadata:
 name: prod-nginx-deployment
 labels:
 env: "apps"
 owner: nginx
 variant: prod
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 4
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.0
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: prod-nginx-service
spec:
 type: NodePort
 ports:
 - port: 80
 NodePort: 30100
 selector:
 app: nginx

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namePrefix: prod-
commonLabels:
 variant: prod
bases:
- ../../base
patches:
 - nodeport.yaml
 - replicas.yaml
images:
 - name: nginx
 newTag: 1.9.0

nodeport.yaml

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30100

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

178

Copyright © SUSE 2021

?
Questions:

Q. What is the name of the files used to tell Kustomize what it is
supposed to do?

A. Manifests.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

179

Copyright © SUSE 2021

Exercises:
4-1: Manage Applications with Kustomize

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

180

Section: 5
Application Management on Kubernetes with Helm

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

181

Copyright © SUSE 2021

Section Objectives:

1 Understand Basic Helm Concepts

2 Manage Applications with Helm

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

182

Copyright © SUSE 2021

Understand Basic Helm Concepts

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

183

Copyright © SUSE 2021

What is Helm?

● Helm is a tool for managing packages of pre-
configured Kubernetes resources

● Use Helm to:
– Find and use popular software packages
– Share your own applications
– Create reproducible builds of your Kubernetes

applications
– Intelligently manage your Kubernetes manifest files
– Manage releases of Helm packages

To quote the Helm documentation:

“Helm installs charts into Kubernetes, creating a new release for each installation. And to find new charts, you
search Helm chart repositories.”

It is important to understand that even though Helm is often compared to package managers such as RPM
and Dpkg there is a significant difference between helm “packages” and traditional software packages.

With traditional software packages, everything required to install and run the package is included inside the
software package itself. These things include all required files, scripts, configuration, documentation and the
metadata that describes how the package is installed (i.e. what goes where). A software repository for these
software packages is comprised of two parts: the software packages themselves and a catalog that
contains the metadata of each of the packages in the repository.

A Helm package, or chart, only contains the metadata that describes how to deploy the package (i.e.
templatized Kubernetes manifests). This metadata is similar to the metadata that is contained in the header
of a RPM package. A Helm repository contains this metadata for all charts in the repository. The “files” that are
installed when the chart is deployed are similar to the files/scrips/config/etc in a RPM package. With Helm,
these files are containers that reside in one or more separate container registries.SUSE In

te
rn

al
an

d
Par

tn
er

 U
se

 O
nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

184

Copyright © SUSE 2021

Three Central Concepts to Helm

• A Release is an instance of a chart

running in a Kubernetes cluster

• One chart can be installed

multiple times into the same

cluster

• Each time it is installed, a new

Release is created

• A Chart is a Helm package

• Charts contain all of the

resource definitions necessary

to run an application, tool, or

service inside of a Kubernetes

cluster

• A Repository is the place

where charts can be

collected and shared

RepositoryChart Release

To understand Helm you must understand 3 main concepts:

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

185

Copyright © SUSE 2021

Simple Helm Explanation

Helm installs charts into Kubernetes ...

Creating a new release for each installation ...

To find new charts, you can search Helm chart
repositories.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

186

Copyright © SUSE 2021

Helm and Templates

● Helm uses templating to build the final
manifest by replacing values in the
template manifests with values provided
on the CLI from the values file

● Templates are created using Go's
templating syntax
(i.e. lots of curly brackets in a yaml file)

apiVersion: v1
kind: Service
metadata:
 name: {{ template "wordpress.fullname" . }}
 labels: {{- include "wordpress.labels" . | nindent 4 }}
 {{- if .Values.service.annotations }}
 annotations: {{- include "wordpress.tplValue" (dict
"value" .Values.service.annotations "context" $) | nindent 4 }}
 {{- end }}
spec:
 type: {{ .Values.service.type }}
 {{- if (or (eq .Values.service.type "LoadBalancer")
(eq .Values.service.type "NodePort")) }}
 externalTrafficPolicy: {{ .Values.service.externalTrafficPolicy |
quote }}
 {{- end }}
 {{- if (and (eq .Values.service.type
"LoadBalancer") .Values.service.loadBalancerSourceRanges) }}
 loadBalancerSourceRanges:
 {{- with .Values.service.loadBalancerSourceRanges }}
{{ toYaml . | indent 4 }}
 {{- end }}
 {{- end }}
 ports:
 - name: http
 port: {{ .Values.service.port }}
 targetPort: http
 {{- if (and (or (eq .Values.service.type "NodePort")
(eq .Values.service.type "LoadBalancer")) (not
(empty .Values.service.nodePorts.http))) }}
 nodePort: {{ .Values.service.nodePorts.http }}
 {{- else if eq .Values.service.type "ClusterIP" }}
 nodePort: null
 {{- end }}

...

Example Template File

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

187

Copyright © SUSE 2021

Helm Chart Structure

● Helm charts are a directory structure
stored in an archive file

● Chart.yaml provide description of the
helm chart

● values.yaml contains all possible values
used in the templates

● templates directory contains template
yaml files used to generate the final yaml
files

<chart_name>.<version>.tgz

<chart_name>/
 |-Chart.yaml
 |-README.md
 |-values.yaml
 |-templates/
 |-<template_file>.yaml
 |-<template_file>.yaml
 |-...

Example Expanded Chart Directory

Example Chart Filename

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

188

Copyright © SUSE 2021

?
Questions:

Q. What is Helm and how is it used?

A. A tool for managing packages of preconfigured Kubernetes
resources.

Q. What is a Helm chart?

A. A Helm package that contains all of the definitions required
to run an application on a Kubernetes cluster.

Q. What is a Release?

A. An instance of a deployed (installed) helm chart

Q. Where are Helm charts stored?

A. Chart repository.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

189

Copyright © SUSE 2021

Manage Applications with Helm

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

190

Copyright © SUSE 2021

Helm Workflow

values +

Chart Repository Image Registry

Kubernetes Cluster

Management Machine

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

191

Copyright © SUSE 2021

Work with Chart Repositories

Syntax: helm repo MODE OPTIONS

Mode/Option Description
add -add a chart repository
remove -remove a chart repository
list -list chart repositories
update -update info of available charts

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

192

Copyright © SUSE 2021

Chart
Repositories Chart Repository Image Registry

Kubernetes Cluster

Management Machine
helm repo add bitnami
helm repo update

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

193

Copyright © SUSE 2021

Search for Helm Charts

Starting with Helm v3 you can search for a chart in either Helm Hub or repositories.

Syntax: helm search MODE OPTIONS

Mode/Option Description
hub <chart> -search the Helm Hub for a chart
repo <chart> -search the added repositories for a chart

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

194

Copyright © SUSE 2021

Chart
Repositories Chart Repository Image Registry

Kubernetes Cluster

Management Machine

helm search repo nginx

NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/nginx 6.0.2 1.19.1 Chart for the nginx server
bitnami/nginx-ingress-controller 5.4.1 0.34.1 Chart for the nginx Ingress controller
stable/nginx-ingress 1.41.2 v0.34.1 An nginx Ingress controller that uses ConfigMap...
stable/nginx-ldapauth-proxy 0.1.4 1.13.5 nginx proxy with ldapauth
stable/nginx-lego 0.3.1 Chart for nginx-ingress-controller and kube-lego
suse/nginx-ingress 1.41.2 0.15.0 An nginx Ingress controller that uses ConfigMap...
bitnami/kong 1.2.5 2.0.5 Kong is a scalable, open source API layer (aka ...
stable/gcloud-endpoints 0.1.2 1 DEPRECATED Develop, deploy, protect and monitor...

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

195

Copyright © SUSE 2021

Display Information about Charts

Syntax: helm show SUBCOMMAND REPO/CHART OPTIONS

Subcommand/Option Description
all -show all info for a chart
chart -show chart’s definition
readme -show chart’s README
values -show chart’s values

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

196

Copyright © SUSE 2021

Determine Values for a Chart

The values used for a chart can be displayed using the following:
> helm show values stable/nginx
Bitnami NGINX image version
ref: https://hub.docker.com/r/bitnami/nginx/tags/
##
image:
 registry: docker.io
 repository: bitnami/nginx
 tag: 1.19.1-debian-10-r0
 ## Specify a imagePullPolicy
 ## Defaults to 'Always' if image tag is 'latest', else set to 'IfNotPresent'
 ## ref: http://kubernetes.io/docs/user-guide/images/#pre-pulling-images
 ##
 pullPolicy: IfNotPresent
 ## Optionally specify an array of imagePullSecrets.
 ## Secrets must be manually created in the namespace.
 ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
 ##
 # pullSecrets:
 # - myRegistryKeySecretName

String to partially override nginx.fullname template (will maintain the release name)
##
nameOverride:

...

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

197

Copyright © SUSE 2021

Install Charts

Syntax: helm install NAME REPO/CHART OPTIONS

Mode/Option Description
-f / --values <file> -specify values for the chart in a values file
--set <value> -specify values for the chart on the CLI
 format: key=value[,key=value]
--generate-name -generate a release name if on is not provided
--dry-run -simulate an install
-n / --namespace -specify the namespace to install into

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

198

Copyright © SUSE 2021

Install a Chart

values +

Chart Repository Image Registry

Kubernetes Cluster

Management Machine

helm install nginx bitnami/nginx -f nginx-values.yaml

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

199

Copyright © SUSE 2021

Display Status of a Release

The state of a release can be displayed using the following:

Syntax: helm status NAME OPTIONS

> helm status nginx
NAME: nginx
LAST DEPLOYED: Mon Aug 3 21:10:00 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Get the NGINX URL:

 NOTE: It may take a few minutes for the LoadBalancer IP to be available.
 Watch the status with: 'kubectl get svc --namespace default -w nginx'

 export SERVICE_IP=$(kubectl get svc --namespace default nginx --template "{{ range
(index .status.loadBalancer.ingress 0) }}{{.}}{{ end }}")
 echo "NGINX URL: http://$SERVICE_IP/"

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

200

Copyright © SUSE 2021

Uninstall a Release

Syntax: helm uninstall NAME OPTIONS

Option Description
--keep-history -remove all resources and mark as deleted but
 retain the release history
--dry-run -simulate an uninstall
-n / --namespace -specify the namespace the release is in

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

201

Copyright © SUSE 2021

Uninstall a Chart
Chart Repository Image Registry

Kubernetes Cluster

Management Machine

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

202

Copyright © SUSE 2021

Display Release History

The release history for a chart can be displayed using the following:

Syntax: helm history NAME OPTIONS

> helm history nginx
REVISION UPDATED STATUS CHART APP VERSION DESCRIPTION
1 Mon Aug 3 21:10:00 2020 superseded nginx-6.0.2 1.19.1 Install complete
2 Mon Aug 3 21:17:33 2020 deployed nginx-6.0.2 1.19.1 Upgrade complete

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

203

Copyright © SUSE 2021

Upgrade a Release

Syntax: helm upgrade RELEASE REPO/CHART OPTIONS

Option Description
-f / --values <file> -specify values for the chart
--history-max -limit number of revisions saved per release
 (default=10)
--dry-run -simulate an install
-n / --namespace -specify the namespace to install into

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

204

Copyright © SUSE 2021

Roll Back a Release

Syntax: helm rollback RELEASE REVISION OPTIONS

Option Description
--cleanup-on-fail -allow deletion of new resource created in this
 rollback when rollback fails
--dry-run -simulate an uninstall
-n / --namespace -specify the namespace the release is in

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

205

Copyright © SUSE 2021

?
Questions:

Q. What command is used to deploy a Helm chart?

A. helm install

Q. What command is used to remove a release?

A. helm uninstall

Q. What command is used to display information about a
release?

A. helm info

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

206

Copyright © SUSE 2021

Exercises:
5-1: Add a Repository to Helm
5-2: Manage Applications with Helm

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

207

Section: 6
Ingress Networking with an Ingress Controller in
Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

208

Copyright © SUSE 2021

Section Objectives:

1 Understand Ingress Networking for Applications

2 Work with an Ingress Controller

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

209

Copyright © SUSE 2021

Understand Ingress Networking for
Applications

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

210

Copyright © SUSE 2021

What is an Ingress Controller?

● Ingress exposes HTTP and HTTPS routes from outside the cluster to
services within the cluster

● Traffic routing is controlled by rules defined on the Ingress resource

● Ingress can provide load balancing, SSL termination and name-
based virtual hosting

● You have the choice of either using NodePort or an External IP
address for your ingress

● SUSE RKE provides an Ingress controller based on the NGINX ingress
controller and K3s is based on the Traefik ingress controller

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

211

Copyright © SUSE 2021

Work with an Ingress Controller

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

212

Copyright © SUSE 2021

NodePort Controller Values

The NodePort Values specify the
NodePort port rather than letting a
random one get chosen.

(In this file, port 30443 is selected)

Enable the creation of pod security policy
podSecurityPolicy:
 enabled: false

Create a specific service account
serviceAccount:
 create: true
 name: nginx-ingress

Publish services on port HTTPS/30443
These services are exposed on each node
controller:
 service:
 enableHttp: false
 type: NodePort
 nodePorts:
 https: 30443

There are a few things to know about the service section of the values file:

EnableHttp: false is usually a best practice This means that the application will be expecting incoming
traffic to be on https port 443 and to have a certificate. If no actual certificate is available, a self-signed
certificate is possible. No plain http traffic on port 80 will be accepted.

NodePort will actually be listening for traffic on a worker node at port 30443. For example:
https://192.168.111.10:30443

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

213

Copyright © SUSE 2021

External IP Controller Values

The External IP Values allow you to
define the external IP that you would
like the application to be able to use.

This is a great resource for users with
smaller installations that want to
assign a single IP to a group of
applications in a production
environment.

Enable the creation of pod security policy
podSecurityPolicy:
 enabled: false

Create a specific service account
serviceAccount:
 create: true
 name: nginx-ingress

Publish services on port HTTPS/443
These services are exposed on the node with
IP 10.86.4.158
controller:
 service:
 enableHttp: false
 externalIPs:
 - 10.86.4.158

Similar to the NodePort file, here the service section is declaring a specific IP to use with this service. In this
case, the service will be listening for port https://10.86.4.158

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

214

Copyright © SUSE 2021

Internal Port Values

When configuring an app that will
use an ingress, it is important that the
service related to that app be
configured to listen on a specific
internal port.

(In this example, it will be expecting internal
traffic on port 1234)

kind: Service
apiVersion: v1
metadata:
 name: example-service
spec:
 selector:
 app: example
 ports:
 - port: 1234

Each Kubernetes service must listen for a traffic on an internal port. This port isn’t regulated, but of course it
would not be a good idea to use a well known port such as 80, 443, 22, etc.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

215

Copyright © SUSE 2021

Ingress Rules

After the ingress controller has been
successfully deployed, the ingress
rules can be defined in a separate
manifest.

(Each service specified in this manifest will
send traffic on that internal port 1234 on
which the application services will be
listening.)

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: caasp-ingress
 annotations:
 ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /red
 backend:
 serviceName: red-service
 servicePort: 1234
 - path: /green
 backend:
 serviceName: green-service
 servicePort: 1234
 - path: /blue
 backend:
 serviceName: blue-service
 servicePort: 1234

The Ingress rules manifest but set out the path for traffic to flow through as it comes in.

For example: traffic that comes in on https://mywebsite.com/red will flow to a service called red-service on
port 1234. The red-service is connected to an app called red-app. The same thing happens if a user goes to
https://mywebsite.com/blue and they are connect to the blue-app via the blue-service.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

216

Copyright © SUSE 2021

?
Questions:

Q. What is an Ingress Controller and how is it used?

A. Ingress exposes HTTP and HTTPS routes from outside the
cluster to services within the cluster.

Q. What Ingress Controller is used on SUSE Rancher by default?

A. Nginx

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

217

Copyright © SUSE 2021

Exercises:
6-1: Configure Ingress for an Application

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

218

Section: 7
Storage in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

219

Copyright © SUSE 2021

Section Objectives:

1 Understand Kubernetes Storage Concepts

2 Work with Persistent Storage in Storage Classes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

220

Copyright © SUSE 2021

Understand Kubernetes Storage
Concepts

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

221

Copyright © SUSE 2021

Persistent Volume Storage

● With persistent volume storage you can attach persistent storage to
your pods

● Multiple storage back-end types are supported by K8s (i.e. NFS,
Longhorn, Ceph, etc)

● A persistent volume must first be defined before that volume can be
claimed for use

● Claimed volumes can be attached to pods

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

222

Copyright © SUSE 2021

What Are Volumes?

A volume is storage that is ready to be used
For example:

● A database needs data for its data
● An application needs a place to store logs
● A web server needs content to display

A Persistent Volume should be available as long as the application
needs it.
A Persistent Volume Claim is used by an application to reach out to the
Persistent Volume.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

223

Copyright © SUSE 2021

Persistent Volumes and Persistent Volume Claims

Persistent Volumes
The persistent volume is
storage that is ready to be
used.

Persistent Volume Claim
The persistent volume claim is how
the storage is connected to the
application. It is the hand that utilizes
the storage.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

224

Copyright © SUSE 2021

Persistent Volumes

● Admin/Storage Class provisions
them

● Users/Pods claim them

● Volumes have an Independent
lifetime and fate

● Can be handed-off between pods

● Lives until user is done with it

● Dynamically “scheduled” and
managed (like nodes and pods)

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

225

Copyright © SUSE 2021

Storage Classes

● Storage classes can be defined that could map to quality-of-service
levels or other policies defined by administrators

● When combined with backend provisioners they provide for
dynamic creation of persistent storage volumes

● Storage volumes are automatically provisioned on-demand when a
persistent volume claim is made

● A provisioner must exist for each specific storage backend type

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

226

Copyright © SUSE 2021

?
Questions:

Q. Why is persistent storage needed in Kubernetes?

A. By default data is stored in the container image of an
instantiated container and is only accessible to that container
instance and will be deleted when that instance of the
container is deleted.

Q. What is a PersistentVolume in Kubernetes?

A. An object in Kubernetes that represents a chunk of storage
that is ready to be used but not yet accessible to a pod.

Q. What is a PersistentVolumeClaim in Kubernetes?

A. A "requests" that connects a PersistentVolume to a pod.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

227

Copyright © SUSE 2021

Work with Persistent Storage in
Storage Classes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

228

Copyright © SUSE 2021

Persistent Volume

● Define a storage volume that already
exists that can be used by cluster
resources

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs-vol-01
 labels:
 volname: vol-01
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 storageClassName: ""
 persistentVolumeReclaimPolicy: Recycle
 nfs:
 server: 172.30.201.2
 path: "/srv/nfs/vol-01"

Manifest:

Commands: kubectl apply -f persistentvolume.yaml
 kubectl get pv

Assign a label

Optionally assign
a storageClassName

Path to the
storage volume

Requirements for manually created volumes:

-Volumes must be pre-created on the storage back end
-All worker nodes must be able to access the storage back-end(s)

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

229

Copyright © SUSE 2021

PersistentVolumeClaim

● Request to use storage

● Can request specific properties such as
size, access modes, etc.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-claim
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Mi
 storageClassName: ""
 selctor:
 matchLabels:
 volname: "vol-01"

Manifest:

Limit to a specific
storageClassName

Map request
to a specific label

Commands: kubectl apply -f persistentvolumeclaim.yaml
 kubectl get pvc

Requirements for persistent volume claims with manually created volumes:

-Volume must already exist on the storage back-end
-The Persistent Volume object must have already been created in the cluster

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

230

Copyright © SUSE 2021

PersistentVolumeClaim (storaegClass)

● Can request a volume from a specific
storageClass

● Volume could be dynamically created
volume using a storageClass provisioner

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-sc-claim
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Mi
 storageClassName: “nfs-client”

Manifest:

Commands: kubectl apply -f persistentvolumeclaim.yaml
 kubectl get pvc

Limit to a specific
storageClassName

Requirements when using a Storage Class with a Storage Class Provisioiner:

-A storage class provisioner that is compatible with the storage back-end
-All worker nodes must be able to access the storage back-end

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

231

Copyright © SUSE 2021

Usa a Persistent Volume

● When using a persistent volume you
specify both the mountpoint and the
claim that is associated with the volume

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nfs-web
spec:
 selector:
 matchLabels:
 app: nfs-web
 replicas: 1
 template:
 metadata:
 labels:
 app: nfs-web
 spec:
 containers:
 - name: web
 image: nginx:1.9.0
 ports:
 - name: web
 containerPort: 80
 volumeMounts:
 - name: nfs-vol-01
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: nfs-vol
 persistentVolumeClaim:
 claimName: nfs-claim

Manifest:

Specify the mountpoint
inside the container

Reference the
persistentVolumeClaim

When connecting a persistent volume to an application you reference the Persistent Volume Claim object
not the Persistent Volume object.

You must also specify a mount point where you want the volume to be mounted and accessed inside of the
container's filesystem.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

232

Copyright © SUSE 2021

?
Questions:

Q. What is a StorageClass in Kubernetes?

A. A Kubernetes object that can provide QOS for access to
storage or when combined with a provisioner dynamically
create a PersistentVolume on demand.

Q. What is required for PersistentVolumes and
PersistentVolumeClaims to be created on-demand in
Kubernetes?

A. StorageClass with a Provisioner

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

233

Copyright © SUSE 2021

Exercises:
7-1: Configure Persistent Storage with NFS
7-2: Configure Persistent Storage with a NFS
StorageClass

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

234

Section: 8
Resource Usage Control in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

235

Copyright © SUSE 2021

Section Objectives:

1 Understand Resource Usage Control in Kubernetes

2 Work with Limit Ranges

3 Work with Resource Quotas

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

236

Copyright © SUSE 2021

Understand Resource Usage
Control in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

237

Copyright © SUSE 2021

The Problem

By default containers run with unbounded compute resources.

Meaning ...

A pod or even a single container could potentially monopolize all

available resources.

At the end of the day a container is simply a process running on an OS. If precautions are not put into place
the process is free to consume as much of the capacity of the underlying hardware as it wants. Out of
control processes can cause the system performance to degrade of even cause the system to hang. As
there is no hardware level isolation between the container processes other OS level components such as
cgroups must be leveraged to provide constraints.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

238

Copyright © SUSE 2021

Solutions to the Problem

Limit Ranges

● Set at the namespace level but applied
at the pod/container level

● Enforce minimum/maximum compute
resources usage per Pod/Container

● Enforce minimum/maximum storage
request per PersistentVolumeClaim

● Set default request/limit for compute
resources in a namespace

Resource Quotas

● Set and applied at the namespace level

● Constrain aggregate resource
consumption per namespace

● Can limit both number of objects and
total amount of resource consumed

The most important concept to understand is that, while Limit Ranges and Quotas are created at the
namespace layer, Limits/Requests and Limit Ranges are applied at the pod/container level where quotas
apply to the aggregate of all pods/containers in a namespace.

Limit Ranges and Quotas both use Limits/Requests as the mechanism to restrict/control resource
consumption.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

239

Copyright © SUSE 2021

?
Questions:

Q. By default ontainers can consume as many resources as they
want by. (True or False)

A. True

Q. The amount of resources a container can consume can be
controlled by what two things?

A. Limits, Quotas.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

240

Copyright © SUSE 2021

Work with Limit Ranges

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

241

Copyright © SUSE 2021

Limits vs Requests

Limit
Upper/lower bound on the amount of a
resource a pod/container can consume

Request
The specific amount of a resource a pod
wants or needs to run

● When a pod/container is created, by default it is unconstrained with
regards to resource consumption

● Pods/containers can Request resources and Limits can be placed on
resource consumption

● Pods/Containers can specify both Requests and Limits

Kubernetes provides a way to not only limit how much of the underlying resources a container can consume
(Limits), it also provides a way for the containers themselves to tell it how many resources they need, at
minimum, to run (Requests). These Limits and Requests are then used to control resource usage by the
workloads running on the Kubernetes cluster

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

242

Copyright © SUSE 2021

LimitRanges

● A LimitRange is created in a
namespace

● A LimitRange can constrain resources
such as CPU, memory and storage

● A LimitRange can define:
– Maximum and Minimum bounds for

Limits
– Maximum and minimum bounds for

Requests
– Default Limits and Requests values

apiVersion: v1
kind: LimitRange
metadata:
 name: cpu-and-memory-limits
spec:
 limits:
 - default:
 cpu: "1"
 memory: 200Mi
 defaultRequest:
 cpu: 500m
 memory: 100Mi
 max:
 cpu: "2"
 memory: 1Gi
 min:
 cpu: 200m
 memory: 3Mi
 type: Container

Manifest:

LimitRanges are created at the namespace level and apply to each pod/container running in that
namespace. However, the Limits/Requests defined in a LimitRange are applied to pods/containers that are
created after the LimitRange itself is created. They are not applied retroactively to pods/containers already
running in the namespace unless one attempts to change the Limits/Requests of the already running
pods/containers.

Minimum and Maximum Limits/Requests can be specified. These values can prevent pods/containers to be
created that specify Limits/Requests outside of these values. Default Limits/Requests can also be specified.
The defaults will apply to any pod/container that is created in the namespace that doesn't specify its own
Limits/Requests.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

243

Copyright © SUSE 2021

Limits/Requests in Pods

● Pods can specify either/both Limits
and Requests

● If neither Limits nor Requests are
specified the default Limits/Requests
defined in the LimitRange will be
applied

apiVersion: v1
kind: Pod
metadata:
 name: nginx-pod
spec:
 containers:
 - name: nginx-pod
 image: nginx
 resources:
 limits:
 cpu: "4"
 memory: 500Mi
 requests:
 cpu: "1"
 memory: 100Mi

Manifest:

Pods/containers can specify their own Limits/Requests in their manifests. This allows them to not only be
"good citizens" by proactively limiting the resources they can consume but also communicate to the
scheduler any minimum level of resources (CPU/Memory/Storage) that they require to run.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

244

Copyright © SUSE 2021

?
Questions:

Q. What are Limits with regard to resource usage in Kubernetes?

A. Mechanisms to limit the minimum/maximum amount of
resources that can be consumed by pods.

Q. What are Requests with regard to resource usage in
Kubernetes?

A. Mechanisms for pods to requist specific amounts of
resources.

Q. What is a LimitRange in Kubernetes and how is it used?

A. A setting applied to a namespace to set and enforce limits.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

245

Copyright © SUSE 2021

Exercises:
8-1: Define Default Limits for Pods in a Namespace
8-2: Define Limits for Containers and Pods

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

246

Copyright © SUSE 2021

Work with Resource Quotas

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

247

Copyright © SUSE 2021

Limit Ranges vs Resource Quotas

Limit Ranges
● Created in a namespace but enforced

on a pod/container basis

● Enforced only on objects created after
LimitRange is created

● Apply only to specific resources (CPU,
Memory, Storage, etc)

Resource Quotas
● Enforced on the aggregate resources

consumed in a namespace

● Enforced only on objects created after
Quota is created

● Apply to both amount of resources and
number of objects

● Can be used in conjunction with
LimitRanges

● Can be set for both resource limits and
requests

Quotas are created at the namespace level and apply to the aggregate resources consumed by all
pods/containers running in the namespace. Like with LimitRanges, quotas only apply to pods/containers
created in the namespace after they Quotas themselves have been created. They do not apply retroactively
to any pod/container already running in the namespace unless one attempts to change the Limits/Requests
of the already running pods/containers.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

248

Copyright © SUSE 2021

Generally Scoped Quotas in a Namespace

● Quotas can be scoped generally
within a namespace

● Apply to all pods/containers in a
namespace

apiVersion: v1
kind: ResourceQuota
metadata:
 name: pod-quota
spec:
 hard:
 cpu: "10"
 memory: 200Gi
 pods: 10

Manifest:

> kubectl describe quota
Name: pod-quota
Namespace: default
Resource Used Hard
-------- ---- ----
cpu 0 10
memory 0 20Gi
pods 0 10

Quotas can be created in a namespace that are generally applied to all pods/container that are created
despite any priority request that may be requested by the pods/containers. These would be considered as
Generally Scoped Quotas rather then specifically scoped quotas in the namespace.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

249

Copyright © SUSE 2021

Priority Scoped Quotas in a Namespace
● Quotas can be scoped based on

priority
● Only apply to pods assigned that

priority

apiVersion: v1
kind: List
items:
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: pods-high
 spec:
 hard:
 cpu: "10"
 memory: 200Gi
 pods: 10
 scopeSelector:
 matchExpressions:
 - operator : In
 scopeName: PriorityClass
 values: ["high"]
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: pods-low
 spec:
 hard:
 cpu: "5"
 memory: 100Gi
 pods: 5
 scopeSelector:
 matchExpressions:
 - operator : In
 scopeName: PriorityClass
 values: ["low"]

Manifest:

> kubectl describe quota
Name: pods-high
Namespace: default
Resource Used Hard
-------- ---- ----
cpu 0 10
memory 0 20Gi
pods 0 10

Name: pods-low
Namespace: default
Resource Used Hard
-------- ---- ----
cpu 0 5
memory 0 10Gi
pods 0 5

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

250

Copyright © SUSE 2021

Priority Scoped Pod vs Quota
apiVersion: v1
kind: List
items:
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: pods-high
 spec:
 hard:
 cpu: "10"
 memory: 200Gi
 pods: 10
 scopeSelector:
 matchExpressions:
 - operator : In
 scopeName: PriorityClass
 values: ["high"]
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: pods-low
 spec:
 hard:
 cpu: "5"
 memory: 100Gi
 pods: 5
 scopeSelector:
 matchExpressions:
 - operator : In
 scopeName: PriorityClass
 values: ["low"]

apiVersion: v1
kind: Pod
metadata:
 name: high-priority
spec:
 containers:
 - name: high-priority
 image: opensuse/leap
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo hello; sleep 10;done"]
 resources:
 requests:
 cpu: "1"
 memory: "1Gi"
 limits:
 cpu: "1"
 memory: "1Gi"
 priorityClassName: low

Quota Manifest:

Pod Manifest:

To take advantage of Priority Scoped Quotas a pod/container must specify, using a scopeSelector, the
priority level that it wants in its manifest. The specified priority level must match on that is associated with a
Priority Scoped Quota created in the namespace.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

251

Copyright © SUSE 2021

?
Questions:

Q. What is a Resource Quota in Kubernetes and how is it used?

A. Restriction on the aggregate resources consumed by all
pods in a namespace.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

252

Copyright © SUSE 2021

Exercises:
8-3: Define Quotas for a Namespace
8-4: Test Quotas for a Namespace

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

253

Section: 9
Role Based Access Controls in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

254

Copyright © SUSE 2021

Section Objectives:

1 Understand Role Based Access Control in Kubernetes

2 Authenticate to a Kubernetes Cluster

3 Configure RBAC in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Course Title

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

255

Copyright © SUSE 2021

Understand Role Based Access
Control in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

256

Copyright © SUSE 2021

What is Role Based Access Control (RBAC)?

Role Based Access Control (RBAC) is a set of functions in Kubernetes
that controls who/what is allowed to perform specific actions in
Kubernetes.

Example Use Cases:
● Users who want to deploy new applications
● Applications who need to access specific resources
● Services that need to be accessed by multiple applications
● System-wide application and user permissions

Kubernetes uses Role Based Access Control (RBAC) to determine who can perform what actions on which
resource in the cluster. Permissions are additive in nature rather than subtractive. A permission must be
explicitly granted for a subject to be able to perform an action. This makes it very important to be specific
rather then general when assigning permissions.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

257

Copyright © SUSE 2021

Three Elements of RBAC

Subjects Resources Operations
 (Verbs)

list

get

describe

create

delete

patch

…

users/groups

ServiceAccounts

processes
in pods or Host OS

…

pod deployment

namespace service

configmap secret

…

Subjects:

Subjects are objects that roles can be assigned to. These objects will then be able to perform actions on
resources in the cluster. Typically the type of subject you will be dealing with is a user.

Resources:

Resources are the objects defined in the Kubernetes API. Some of these resources are scoped globally in the
cluster (i.e. nodes) where other resources can be scoped relative to a namespace (i.e. pod, deployment,
service, etc).

Operations:

Operations are the verbs that can be used against a resource.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

258

Copyright © SUSE 2021

What are Users?

● Subjects that correlate to humans
(or applications external to the
cluster)

● User/Group accounts are defined
externally to the K8s Cluster:
– Certificate based
– Token based
– OAuth2
– Basic Authentication

user group

Technically speaking the User is the subject that is authenticating. However, roles can be assigned to both
users and groups.

Both the user and the groups are defined externally to the cluster. For example you can have users and
groups defined as objects in an LDAP directory. You can then use an OAuth2 connector to talk to the LDAP
directory to perform user authentication and determine user group membership.

If you are using certificate based authentication the cn= property defined in the certificate is interpreted as
the "user". The o= properties defined in the certificate are interpreted as the "groups" the user is a member of.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

259

Copyright © SUSE 2021

What are ServiceAccounts?

● Subjects that correlate accounts
created in the K8s cluster

● ServiceAccounts can be created
for and used by applications or by
human users

ServiceAccount

ServiceAccounts are defined internally to the cluster. They can be used for users or "services" to access
resources in the cluster. The ServiceAccount will have an access token that it presents to have its access
"authorized". This token can be placed in a standard kubeconfg file or passed to the API with the access
request.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

260

Copyright © SUSE 2021

What are Roles?

● Link Operations with Resources
● Act as sets of permissions
● Permissions add abilities but can

not remove abilities
● Can be namespace scoped

(Roles) or cluster scoped
(ClusterRoles)

Resources Operations
 (Verbs)

list

get

describe

create

delete

patch

…

pod deployment

namespace service

configmap secret

…

Roles are the mechanism that is used to link actions with resources. They are effectively the "permissions"
that are assigned to subjects.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

261

Copyright © SUSE 2021

What are RoleBindings/ClusterRoleBindings?

• Constructs that associate

(binds) a Subject to a Role

or ClusterRole

Subjects

processes
in pods

processes
in Host OS

…

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: walnuts-pod-watcher
 namespace: walnuts
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: pod-watcher
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

users/groups

RoleBindings are the mechanism that is used to link, or bind, a Role to a Subject thereby granting the Subject
the permission defined by the Role.

Role bindings come in two different types that an be assigned at the namespace level or at the cluster level.
Cluster scoped role bindings are defined as an object of kind ClusterRoleBinding and can only reference
ClusterRoles where namespace scoped role bindings are of kind RoleBinding and can only reference Roles.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

262

Copyright © SUSE 2021

?
Questions:

Q. What are the three elements of Role Based Access Control in
Kubernetes?

A. Subjects, Resources, Operations.

Q. What are used to link users to an operations?

A. Roles.

Q. What is a ServiceAccount?

A. An account created internally to the Kubernets cluster that
can be used by applications or users to authenticate to the
cluster.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

263

Copyright © SUSE 2021

Exercises:
9-1: Create Service Accounts

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

264

Copyright © SUSE 2021

Authenticate to a Kubernetes
Cluster

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

265

Copyright © SUSE 2021

Kubeconfig file

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: <ca certificate>
 server: <server URL and port>
 name: <cluster name>
contexts:
- context:
 cluster: <cluster name>
 user: <user name>
 name: <context name>
current-context: <context name>
kind: Config
preferences: {}
users:
- name: <user/serviceaccount name>
 user:
 token: <authentication token>

• Used to authenticate to the

cluster
• Default location: ~/.kube/config

• Can be supplied on the CLI or

environment variable

• Contains 3 main sections:
• Clusters

• Contexts

• Users

The kubeconfig files are what the kubectl command uses to determine how to access a Kubernetes cluster
as well as the context (subject/user and cluster name) in the cluster. The command also uses the file to
determine the user and the user's authentication token used to access the cluster.

The default location that kubectl looks for a kubeconfig file is ~/.kube/config but the path to a kubeconfig
file can also either be passed to the kubectl command using the --kubeconfig CLI option or set in the
KUBECONFIG environment variable.

The tree main sectionsof a kubeconfig file are clusters:, contexts: and users:.

The clusters: section contains connection information for one or more clusters. Connection information
includes the address to connect to and the CA certificate for the cluster.

The users: section contains one ofr more user that will be used when connectiong to the cluster(s). The user
info includes the user name and authentication infor such as a token or connection info for a authetication
provider. The user can be ueiother a "user" or a serviceaccount.

The contexts: section contains the mappings of the user(s) to the cluster(s).

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

266

Copyright © SUSE 2021

Kubeconfig File Example: User
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: ...
 server: https://control01.example.com:6443
 name: local
contexts:
- context:
 cluster: local
 user: charlie
 name: local
current-context: local
kind: Config
preferences: {}
users:
- name: charlie
 user:
 auth-provider:
 config:
 client-id: oidc
 client-secret: ...
 id-token: ...
 idp-issuer-url: https://master01.example.com:32000
 refresh-token: ...
 name: oidc

• User: section contains

authentication provider

information

In a kubeconfig for a user the user: entry in the users: section will contain the connection information for
the authentication provider that will be used to autheinticat the users.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

267

Copyright © SUSE 2021

Kubeconfig File Example: Service Account

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: <ca certificate>
 server: https://control01.example.com:6443
 name: local
contexts:
- context:
 cluster: local
 user: charlie
 name: local
current-context: local
kind: Config
preferences: {}
users:
- name: charlie
 user:
 token: <authentication token>

• User: section contains

authentication token

In a kubeconfig for a serviceaccount the user: entry in the users: section will contain the autheintication
token for the services account. This token can be retrieved from the secret that was created for and
associated with the serviceaccount..

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

268

Copyright © SUSE 2021

?
Questions:

Q. What is a kubeconfig file and how is it used?

A. File containing authentication information for interacting
with a Kubernetes cluster.

Q. What are the three main sections of a kubeconfig file?

A. Clusters, Contexts, Users.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

269

Copyright © SUSE 2021

Exercises:
9-2: Create kubeconfig Files for Service Accounts

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

270

Copyright © SUSE 2021

Configure RBAC in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

271

Copyright © SUSE 2021

Role Manifest

● Roles are given a name

● Roles are scoped to a specific
namespace

● Rules are comprised of:
– apiGroups
– resources
– verbs

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: walnuts-pod-watcher
 namespace: walnuts
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Manifest:

Command: kubectl apply -f walnuts-pod-watcher.yaml

When creating a role, you must first give the role a name. In this example, the role is called walnuts-pod-
watcher. It uses the default apiGroup (which is normal for pods). It is allowed by the verb list to “get”, “watch”,
and “list”.
The resources list only has “pods”.
This role also only works in the walnuts namespace.
Therefore any subject that is bound to this role will have the ability to get, watch, and list pods in the walnuts
namespace.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

272

Copyright © SUSE 2021

Information About Roles

Display roles defined in a namespace
> kubectl get roles -n walnuts
NAME CREATED AT
walnuts-admin 2020-08-19T16:47:05Z
walnuts-deployment-manager 2020-08-19T16:47:15Z
walnuts-pod-watcher 2020-08-19T16:47:22Z

> kubectl describe role walnuts-pod-watcher -n walnuts
Name: walnuts-pod-watcher
Labels: <none>
Annotations: PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 pods [] [] [get watch list]

Display info about a role defined in a namespace

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

273

Copyright © SUSE 2021

ClusterRole Manifest

● ClusterRoles are given a name

● ClusterRoles are not scoped to a specific
namespace but are cluster scoped

● Rules are comprised of:
– apiGroups
– resources
– verbs

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: cluster-pod-watcher
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Manifest:

Command: kubectl apply -f cluster-pod-watcher.yaml

When creating a ClusterRole, you must first give the role a name. In this example, the ClusterRole is called
pod-watcher. It uses the default apiGroup (which is normal). It is allowed by the verb list to “get”, “watch”, and
“list”.
The resources list only has “pods”.
This role works in all namespaces.
Therefore any subject that is bound to this role will have the ability to get, watch, and list pods in the all
namespaces.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

274

Copyright © SUSE 2021

Information About ClusterRoles

Display ClusterRoles defined in a cluster
> kubectl get clusterroles
NAME CREATED AT
admin 2020-08-17T17:59:05Z
cilium 2020-08-17T17:59:10Z
cilium-operator 2020-08-17T17:59:10Z
cluster-admin 2020-08-17T17:59:05Z
cluster-pod-watcher 2020-08-20T17:01:32Z

...

view 2020-08-17T17:59:05Z

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

275

Copyright © SUSE 2021

Information About ClusterRoles

Display info about a cluster role
> kubectl describe clusterRole cluster-pod-watcher
Name: cluster-pod-watcher
Labels: <none>
Annotations: PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 pods [] [] [get watch list]

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

276

Copyright © SUSE 2021

Role vs ClusterRole Manifest Differences

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: pod-watcher

rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: walnuts-pod-watcher
 namespace: walnuts
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

ClusterRole Manifest:Role Manifest:

The only real differences in the manifests for Roles and ClusterRoles are that the kind: is different (Role vs
ClusterRole) and a ClusterRole does not have a namespace: property in the metadata section.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

277

Copyright © SUSE 2021

RoleBinding Manifest - Users

● RolesBindings are given a name

● RoleBindings are scoped to a specific
namespace

● RoleBindings associate a Subject with a
Role

● When the Subject is a User you must
specify the rbac apiGroup

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: charlie-read-walnuts-pods
 namespace: walnuts
subjects:
- kind: User
 name: charlie
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: walnuts-pod-watcher
 apiGroup: rbac.authorization.k8s.io

Manifest:

Command: kubectl apply -f charlie-read-walnuts-pods.yaml

When creating a RoleBinding, you must first give the RoleBinding a name. In this example, the RoleBinding is
called charlie-read-walnuts-pods. It uses, in the subjects: section User for the kind: and
rbac.authorization.k8s.io for the apiGroup:.

This example links the User named charlie to the walnuts-pod-watcher role in the walnuts namespace.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

278

Copyright © SUSE 2021

RoleBinding Manifest - ServiceAccounts

● RolesBindings are given a name

● RoleBindings are scoped to a specific
namespace

● RoleBindings associate a Subject with a
Role

● When the Subject is a ServiceAccount you
must specify the Namespace in which it
resides

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: charlie-read-walnuts-pods
 namespace: walnuts
subjects:
- kind: ServiceAccount
 name: charlie
 namespace: walnuts
roleRef:
 kind: Role
 name: walnuts-pod-watcher
 apiGroup: rbac.authorization.k8s.io

Manifest:

Command: kubectl apply -f charlie-read-walnuts-pods.yaml

RoleBindings for ServiceAccounts differ from those for Users/Groups in that in the subjects: section you use
ServiceAccount for the kind: and you specify the namespace: in whigh the ServiceAccount resindes.

This example links the ServiceAccount named charlie to the walnuts-pod-watcher role in the walnuts
namespace.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

279

Copyright © SUSE 2021

ClusterRoleBinding Manifest - User

● ClusterRolesBindings are given a name

● Cluster RoleBindings are not scoped to a
specific namespace

● ClusterRoleBindings associate a Subject
with a ClusterRole

● When the Subject is a User you must
specify the rbac apiGroup

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: charlie-read-pods
subjects:
- kind: User
 name: charlie
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: cluster-pod-watcher
 apiGroup: rbac.authorization.k8s.io

Manifest:

Command: kubectl apply -f charlie-read-pods.yaml

When creating a ClusterRoleBinding, you must first give the ClusterRoleBinding a name. In this example, the
ClusterRoleBinding is called charlie-read-pods. Like with RoleBindings with users it uses User for the kind:
and the rbac.authorization.k8s.io apiGroup; for the apiGroup in the subjects: section.

This example links the User named charlie to the pod-watcher role in all namespaces.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

280

Copyright © SUSE 2021

ClusterRoleBinding Manifest - ServiceAccount

● ClusterRolesBindings are given a name

● Cluster RoleBindings are not scoped to a
specific namespace

● ClusterRoleBindings associate a Subject
with a ClusterRole

● When the Subject is a ServiceAccount you
must specify the Namespace in which it
resides

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: charlie-read-pods
subjects:
- kind: ServiceAccount
 name: charlie
 namespace: walnuts
roleRef:
 kind: ClusterRole
 name: cluster-pod-watcher
 apiGroup: rbac.authorization.k8s.io

Manifest:

Command: kubectl apply -f charlie-read-pods.yaml

When creating a ClusterRoleBinding, you must first give the ClusterRoleBinding a name. In this example, the
ClusterRoleBinding is called charlie-read-pods. ILike with RoleBindings with users it uses ServiceAccount for
the kind: and the namspace: in which the ServiceAccount resides in the subjects: section.

This example links the ServiceAccount named charlie to the pod-watcher role in all namespaces.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

281

Copyright © SUSE 2021

RoleBinding vs ClusterRoleBinding Manifest
Differences

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: read-pods

subjects:
- kind: User
 name: charlie@example.com
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: pod-watcher
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: charlie-read-walnuts-pods
 namespace: walnuts
subjects:
- kind: User
 name: charlie@example.com
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: walnut-pod-watcher
 apiGroup: rbac.authorization.k8s.io

ClusterRoleBinding Manifest:RoleBinding Manifest:

The only real differences in the manifests for Roles and ClusterRoles are that the kind: is different (Role vs
ClusterRole) and a ClusterRole does not have a namespace: property in the metadata section.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

282

Copyright © SUSE 2021

?
Questions:

Q. In what two scopes can rules be defined?

A. Cluster, namespace.

Q. What kind of role is used for cluster scoped resources?

A. ClusterRole

Q. What is used to link a role with rules relating to namespace
scoped resources to a user?

A. RoleBinding.

Q. What is used to link a role with rules relating to cluster scoped
resources to a user?

A. ClusterRoleBinding.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Copying all or part of this manual, or distributing such copies, is strictly prohibited.

283

Copyright © SUSE 2021

Exercises:
9-3: Create Roles and CLusterRoles
9-4: Create RoleBindings and ClusterRoleBindings
9-5: Test RBAC in Kubernetes

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

Thank you
For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

+49 (0)911-740 53-0 (Worldwide)

Maxfeldstrasse 5

90409 Nuremberg

www.suse.com

© 2021 SUSE LLC. All Rights Reserved. SUSE and
the SUSE logo are registered trademarks of
SUSE LLC in the United States and other
countries. All third-party trademarks are the
property of their respective owners.

SUSE In
te

rn
al

an
d

Par
tn

er
 U

se
 O

nly

Do
Not

 D
ist

rib
ut

e

	Cover Page
	Table of Contents
	Section 01: Course Introduction
	Section 02: Introduction to Containers and Container Orchestration
	Section 03: Kubernetes Administration
	Section 04: Application Management on Kubernetes with Kustomize
	Section 05: Application Management on Kubernetes with Helm
	Section 06: Ingress Networking with an Ingress Controller in Kubernetes
	Section 07: Storage in Kubernetes
	Section 08: Resource Usage Control in Kubernetes
	Section 09: Role Based Access Controls in Kubernetes

